1) a*h 2)площадь трапеции=(а+в)*H/2, в равнобедренной трапеции углы при основании равны 3)Дан прямоугольный треугольник АВС,где АВ и АС-катеты, ВС-гипотенуза,AH-высота,а АА1-медиана. S=1/2BC*AH 1/2ВС=АА1,следовательно,S=AA1*BH=24*25=600cм2. 4) угол DAK = AKB как углы, образованные сечением прямой двух параллельных прямых. т.к АК - биссектрисса BAD, то BAK = AKB и треугольник BAK - равносторонний. в случае, если АК и DM пересекаются (рисунок) BC = 3/2 * BK = 3/2 * 20 = 30. Периметр равен 100 см В случае, если AK и DM не пересекаются (рисунок делаем самостоятельно) BC = 3 BK = 60. Периметр равен 160 см
Вписываем в исходный треугольник окружность с центром О, проводим касательные перпендикулярно биссектрисам двух острых углов исходного треугольника (на рисунке ST и UV). Эти касательные отрезают два остроугольных треугольника AST и UVC (т.к равнобедренные треугольники с острым углом противолежащим основанию являются остроугольными). В центральном 5-угольнике все его внутренние углы тупые (кроме, может быть угла B). Соединяем вершины этого 5-угольника с центром О. Полученные пять треугольников остроугольные, потому что проведенные отрезки - биссектрисы углов 5-угольника, а биссектрисы делят любой угол на два острых, причем, если угол был тупой, то его половина больше 45 градусов, т.е. это означает что углы при вершине О, острые.
P.S. Можно доказать, что меньше, чем на 7 остроугольных треугольников разрезать нельзя.
2)площадь трапеции=(а+в)*H/2, в равнобедренной трапеции углы при основании равны
3)Дан прямоугольный треугольник АВС,где АВ и АС-катеты, ВС-гипотенуза,AH-высота,а АА1-медиана. S=1/2BC*AH 1/2ВС=АА1,следовательно,S=AA1*BH=24*25=600cм2.
4)
угол DAK = AKB как углы, образованные сечением прямой двух параллельных прямых. т.к АК - биссектрисса BAD, то BAK = AKB и треугольник BAK - равносторонний. в случае, если АК и DM пересекаются (рисунок) BC = 3/2 * BK = 3/2 * 20 = 30. Периметр равен 100 см В случае, если AK и DM не пересекаются (рисунок делаем самостоятельно) BC = 3 BK = 60. Периметр равен 160 см