Пусть ABCD - ромб, в который вписана окружность касающаяся стороны AB в точке K.
Пусть O - центр окружности, тогда OK - ее радиус.
Длина окружности равна l = 2pi*R = 24pi => R = 12 см. Т.о. OK = 12 см.
Обозначим длину AK за x => по условию задачи KB = x+10.
Рассмотрим треугольники AKO и OKB. Они подобны по первому признаку подобия.
=> AK:OK = OK:KB <=> x/12 = 12/(x+10) <=> x^2 + 10x - 144 = 0
Это уравнение имеет единственное подходящее решение:
D = 100 + 4*144 = 676 => x1 = (-10 + 26)/2 = 8, x2 = (-10-26)/2 = -18 => AK = 8 см
=> KB = 8 + 10 = 18 см => сторона ромба равна 8 + 18 = 26 см.
Высота ромба равна диаметру окружности, то есть 2R = 24 cм.
Площадь параллелограмма равна произведению стороны на высоту, опущенную на эту сторону =>
Для нашего ромба получаем, что площадь равна S = 26*24 = 624 кв. см.
ответ: 624 кв. см.
На самом деле задана не просто точка, а ДВА отрезка, на которые биссектриса делит (заданную) сторону.
Вот как можно строить. Где-то на плоскости строим угол, равный заданному. От его вершины откладываем вдоль одного луча один из отрезков, на которые биссектриса делит (заданную) сторону, а вдоль другого - другой (откладываем от вершины, конечно).
Концы отрезков соединяем (вдоль этой прямой будет располагаться противоположная строна).
Получился треугольник, подобный искомому.
Если построить биссектрису угла, она разделит противоположную (только что построенную) сторону в нужной пропорции.
Фиксируем точку пересечения (точку, где биссектриса пересекается с построенной прямой) и от неё в разные стороны вдоль построенной прямой откладываем опять те же отрезки (не перепутать куда какой - скажем, меньший в сторону где меньший и наоборот).
Теперь осталось из полученных точек (концов отрезков) провести прямые, параллельные сторонам заданного угла до пересечения.
Построение закончено.