Классная задачка! Требует минимум знаний геометрии.
Попробую рассказать что я делал. Тут везде середины отрезков и ничего конкретного более не сказать. Медиана делит треугольник на равные по площади треугольники. Значит надо это использовать.
Я разделил диагональю МН закрашенное на две части. Значит и площадь разделена на две части. Единственное, что мы знаем об этих площадях - их сумма равна 1. Мне лень обозначать площади S₁ и S₂, поэтому площадь первой части я обозначил а, а второй с. Если сложить а+с = 1. Я построил треугольник ВМН. Медиана МК делит его на два равновеликих треугольника с равной площадью. Если площадь одного а, то и другого а. Из треугольника АВК видно, что и АМВ имеет площадь а.Значит треугольники АВК и СЕД в сумме имеют площадь 2
Потом построил треугольник МСВ и аналогичными суждениями получил, что площадь АМД+площадь СЕД = 2
Признак равенства по гипотенузе и острому углу.Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по двум катетам.Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по катету и гипотенузе.Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по катету и острому углу.Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
ответ: 5
Объяснение:
Классная задачка! Требует минимум знаний геометрии.
Попробую рассказать что я делал. Тут везде середины отрезков и ничего конкретного более не сказать. Медиана делит треугольник на равные по площади треугольники. Значит надо это использовать.
Я разделил диагональю МН закрашенное на две части. Значит и площадь разделена на две части. Единственное, что мы знаем об этих площадях - их сумма равна 1. Мне лень обозначать площади S₁ и S₂, поэтому площадь первой части я обозначил а, а второй с. Если сложить а+с = 1. Я построил треугольник ВМН. Медиана МК делит его на два равновеликих треугольника с равной площадью. Если площадь одного а, то и другого а. Из треугольника АВК видно, что и АМВ имеет площадь а.Значит треугольники АВК и СЕД в сумме имеют площадь 2
Потом построил треугольник МСВ и аналогичными суждениями получил, что площадь АМД+площадь СЕД = 2
Тогда площадь всего четырехугольника = 5