Объяснение:
а) стороны равны 10 см, 15 см и 25 см;
10+15=25 см
Такого треугольника не существует,т.к. сумма двух сторон = третьей,а должна быть больше третьей стороны.
б) стороны относятся как 3:5:10;
3х+5х=8х, 8х<10x ,значит и сумма длин этих сторон будет меньше третьей,а должна быть больше третьей стороны.Такого треугольника не существует.
в) углы равны 46°, 64° и 80°;
46°+ 64° + 80°=180° Существует,так как сумма всех углов Δ=180°
г) углы относятся как 3:5:10.
Существует 3+5+10=18, т.к.180°÷18=10°,если одной части соответствует 10°,то 18×10°=180°
Объяснение:
а) стороны равны 10 см, 15 см и 25 см;
10+15=25 см
Такого треугольника не существует,т.к. сумма двух сторон = третьей,а должна быть больше третьей стороны.
б) стороны относятся как 3:5:10;
3х+5х=8х, 8х<10x ,значит и сумма длин этих сторон будет меньше третьей,а должна быть больше третьей стороны.Такого треугольника не существует.
в) углы равны 46°, 64° и 80°;
46°+ 64° + 80°=180° Существует,так как сумма всех углов Δ=180°
г) углы относятся как 3:5:10.
Существует 3+5+10=18, т.к.180°÷18=10°,если одной части соответствует 10°,то 18×10°=180°
1/6
Объяснение:
Е– середина АВ
АЕ=MN=1/2CD=(1/2)·1=1/2
AEMN – параллелограмм
EM||AN
Угол между AN и MD равен углу между прямой
EM и MD.
AN=√3/2 – высота равностороннего треугольника АКD
MD– высота равностороннего треугольника КDС
ЕМ=AF=MD=√3/2
E=√5/2 – по теореме Пифагора из Δ АЕD.
По теореме косинусов из треугольника EMD:
сos ∠ EMD =(EM2+MD2–ED2)/(2EM·MD)=1/6