М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Продолжаю раздачу . На кону максимум )) Есть две одинаковые сферы, объем каждой 288пи.
Расстояние между их центрами равно 6.
Найти объем фигуры, образованной пересечением этих сфер.

Задача сложнее предыдущей но решаемая ))

Лучшим ответом сделаю ответ участника с наименьшим количеством количеством и наименьшим статусом.
Как обычно за спам - бан и минус .
Вперед!

👇
Ответ:
MishaBor
MishaBor
14.08.2021

V=4/3\piR^3

В условие говорится, что: V=288\pi

Значит: 4/3\piR^3=288\pi

4/3R^3=288

Делим 288 на 4/3, тоже самое, что умножить на 3/4, сокращаем и получаем:

R^3=216

Кубический корень из 216:

R=6

Расстояние между центрами сфер:

6+6=12.

Значит, что сферы пересекаются.

V=V1+V2V=\pi*h²*(R-1/3*h)V1=\pi*3²*(6-1/3*3)=V1=V2=45\piV=V1+V2=45\pi+45\piответ: 90*\pi ед³
4,8(97 оценок)
Открыть все ответы
Ответ:
JoYCasinI2558
JoYCasinI2558
14.08.2021

Объяснение:

(х – а)² + (у – b)² = R² – уравнение окружности, записанное в общем виде, где (а; b) – координаты центра окружности; R – радиус окружности. Из условия задачи известно, что уравнение окружности проходит через точку 8 на оси Ox, то есть через точку с координатами (8; 0), и через точку 4 на оси Oy, то есть через точку с координатами (0; 4). При этом центр находится на оси Oy, значит, точка (0; b) является центром окружности. Подставляя поочередно координаты этих точек в уравнение, получим систему двух уравнений с двумя неизвестными:

(8 – 0)² + (0 – b)² = R² и (0 – 0)² + (4 – b)² = R²;

(8 – 0)² + (0 – b)² = (0 – 0)² + (4 – b)²;

8² + b² = (4 – b)²;

b² – 8 ∙ b + 4² – 8² – b² = 0;

8 ∙ b = – 48;

b = – 6, тогда, R = 10, и уравнение окружности примет вид:

х² + (у + 6)² = 10².

ответ: х² + (у + 6)² = 10² – уравнение данной окружности.

4,4(2 оценок)
Ответ:
liliyamukhamad
liliyamukhamad
14.08.2021

Напиши уравнение окружности, которая проходит через точку 8 на оси Ox, и через точку 4 на оси Oy, если известно, что центр находится на оси Ox.(x−...)²+y²=...²

Объяснение:

Пусть центр окружности имеет координаты О(х;0)  .

Точки принадлежащие окружности имеют координаты (8;0)  и (0;4). Их координаты удовлетворяют уравнению окружности:

(x –х₀)²+ (y – у₀)² = R² , где (х₀;у₀)-координаты центра .

(8-х)²+(0-0)²=R² , или 64-16х+х²=R²

(0-х)²+(4-0)²=R²   или  х²+16=R² .      Вычтем из 1 уравнения 2. Получим :

                                   64-16х-16=0

                                   -16х=-48

                                     х=3.  Центр имеет координаты О(3;0).

Найдем R=√( (3-0)²+(0-4)² )=5.

(x− 3)²+y²=5²

4,7(90 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ