Проведем диагонали параллелограмма. Рассмотрим треугольники ВДС и КЕС. ВС:КС=12:3=4:1 СД:СЕ=8:2=4:1 Стороны треугольниов ВСД и КСЕ пропорциональны и имеют общий угол. Второй признак подобия треугольников: Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Треугольники ВСД и КСЕ подобны,⇒ углы при КЕ и ВД соответственно равны, ⇒КЕ параллельна ВД. Проведем через А прямую, параллельную ВД. Продлим стороны СВ и СД до пересечения с этой прямой в точках М и Н соответсвенно. ВД- средняя линия В треугольника МСН , т.к. параллельна МН и делит АС пополам. ⇒МС=ВС*2=24 см МК=МС-КС=24-3=21 см АР:РС=МК:КС АР:РС=21:3=7:1 ------------- [email protected]
Расстояние между параллельными плоскостями в любом месте одинаково и измеряется перпендикулярным к ним отрезком. Пусть для удобства отрезок - расстояние между плоскостями - для обеих наклонных будет одним и тем же. Тогда наклонные, их проекции и расстояние между плоскостями составят два прямоугольных треугольника, в которых наклонные - гипотенузы, проекции и расстояние между плоскостями - катеты. Одна наклонная по условию равна проекции второй, поэтому равна 5, ее проекция - 3. Со вторым катетом (расстоянием между плоскостями) составится египетский треугольник, поэтому расстояние между плоскостями равно 4. ( Можно проверить по т. Пифагора - результат будет тот же)
∠А=75°.
Объяснение:
Пусть ∠В=х, тогда
∠А=3х
Напомню, что сумма углов в треугольнике равна 180° (по теореме о сумме углов в треугольнике).
Составим уравнение:
∠А+∠В+∠С=180
3х+х+80=180
4х=180-80
4х=100
х=25
Проверка:
3*25+25+80=180
75+25+80=180
100+80=180
180=180
Верно!
Итак: ∠В=25°, тогда
∠А=25°×3=75°.