маємо коло , дві паралельні хорди 6 см і 8 см відстань між хордами 7 см , треба знайти радіус кола Рішення: Через центр 0 проведемо діаметр , який пересіче навпіл малу і велику хорди. З центра 0 проведемо до точок перетину хорд з колом два радіуси і отримаємо два прямокутних трикутника. Щоб знайти радіуси , які є діагоналями цих трикутників, треба розвязати систему. Нам відомо, що відстань між хордами 7 см і не відомо , яка відстань центру кола від хорд. Позначимо одну відстань від центру кола до малої хорди через Х, тоді друга відстань від центра до великої хорди буде 7-Х. складемо систему : R1=R2
1) Дано: ABCD - трапеция,∠А=90°, ∠С-∠В=48°. Найти: ∠D, ∠С, ∠В Решение: 1.Рассмотрим трапецию АВСD. ВА∫∫CD(по опр. трапеции) ⇒ сумма односторонних углов равна 180°(по св-ву парал. прям. и сек.). Пусть секущей будет DA, тогда ∠А+∠D=180° ⇒ ∠D=180°-90°=90°. Возьмем СВ как секущую, тогда ∠С+∠В=180°(по св-ву). 2. Получим систему: ∠С+∠В=180° ∠С-∠В=48° Такое возможно, только если один из углов равен 114, а второй 66. (Найти можно методом подбора). Тогда ∠С=114°(т.к.он тупой), а ∠В=66°(т.к.он острый). ответ: 90°, 114°, 66° 2) Дано: ABCD - прямоугл., ∠АВО=36° Найти: ∠АОD Решение:1.Рассмотрим BD и АС. Они пересекаются в точке О, при этом делятся пополам(по св-ву параллелогр.). Также диагонали равны(по св-ву прямоуг.)⇒ВO=ОА. 2.Рассмотрим ΔВОА: ВО=ОА ⇒ ΔВОА - равнобедр.(по опр.) ⇒ ∠ОВА=∠ВАО=36°(по св-ву равноб. Δ). По теореме о сумме углов треугольника найдем ∠ВОА: 180-36-36=108°. 3. ∠ВОА смежен с ∠АОD. То есть их сумма равна 180(по св-ву) ⇒ ∠AOD=180-108=72° ответ: 72°
Диагонали прямоугольника в точке пересечения делятся пополам. Отсюда следует, что расстояние от точки пересечения до сторон прямоугольника есть половины длины и ширины прямоугольника (т. к расстояния от точки пересечения до одной и другой стороны - это высоты треугольников, опирающихся на длину и на ширину прямоугольника) . => найти высоты равнобедренных треугольников тр. АВС = тр.АСД О=точка пересечения диагоналей ОН-высота АО=1/2АС значит ОН/СД=1/2 СД=6 см ОН=3см
R=5 см
Объяснение:
маємо коло , дві паралельні хорди 6 см і 8 см відстань між хордами 7 см , треба знайти радіус кола Рішення: Через центр 0 проведемо діаметр , який пересіче навпіл малу і велику хорди. З центра 0 проведемо до точок перетину хорд з колом два радіуси і отримаємо два прямокутних трикутника. Щоб знайти радіуси , які є діагоналями цих трикутників, треба розвязати систему. Нам відомо, що відстань між хордами 7 см і не відомо , яка відстань центру кола від хорд. Позначимо одну відстань від центру кола до малої хорди через Х, тоді друга відстань від центра до великої хорди буде 7-Х. складемо систему : R1=R2
R1²=Х²+3² R2²=(7-Х)²+4² х²+9=49-14Х+Х²+16 14Х=56 Х=4
тобто діаметр , або 2 радіуси роздвлили відстань між хордами на 3 і 4 см. тепер ми знайдемо радіус , використовуючи теорему Піфагора, R²=4²+3²=25√=5