М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
andrekunshin
andrekunshin
20.05.2021 06:12 •  Геометрия

Через точку M проведены две прямые a и b, которые пересекают две параллельные плоскости α и β. Первую в точках A1 и A2, вторую - в точках B1 и B2. Найдите MA1 и MB2, если A1A2:B1B2=3:4 , A1B1=3,6,MA2=0,9. В ответ запишите сумму длин сторон MA1 и MB2.


Через точку M проведены две прямые a и b, которые пересекают две параллельные плоскости α и β. Перву

👇
Ответ:
frikadel1
frikadel1
20.05.2021

Т.к. плоскость В₁МВ₂ пересекается с параллельными плоскостями α и β, то линии их пересечения параллельны. А₂А₁║В₂В₁; Треугольники А₁МА₂ и В₁МВ₂ подобны по первому признаку подобия. /угол М- общий, углы А₁ и В₁ равны как соответственные при А₁А₂ В₁В₂ и секущей МВ₁/, отсюда следует  А₁А₂/В₁В₂=МА₂/МВ₂; 3/4=0.9/МВ₂, МВ₂=4*0.9/3=1.2; Пусть МА₁=х, тогда МВ₁=х+3.6;  х/(х+3.6)=3/4; 4х=3х+10.8; х=10.8; МА₁=10.8; МВ₁=10.8+3.6=14.4;

Значит, МА₁+МВ₂=10.8+1.2=12

ответ 12

4,5(76 оценок)
Открыть все ответы
Ответ:
Теорема 2
1-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ.
Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.

Доказательство: Пусть а1 и а2 - 2 параллельные прямые и плоскость, перпендикулярная прямой а1. Докажем, что эта плоскость перпендикулярна и прямой а2. Проведем через точку А2 пересечения прямой а2 с плоскостью произвольную прямую х2 в плоскости . Проведем в плоскости через точку А1 пересечения прямой а1 с прямую х1, параллельную прямой х2. Так как прямая а1 перпендикулярна плоскости , то прямые а1 и x1перпендикулярны. А по теореме 1 параллельные им пересекающиеся прямые а2 и х2 тоже перпендикулярны. Таким образом, прямая а2 перпендикулярна любой прямой х2 в плоскости . А это ( по определению )значит, что прямая а2 перпендикулярна плоскости . Теорема доказана.

Смотри также опорную задачу №2.

Теорема 3
2-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ.
Две прямые, перпендикулярные одной и той же плоскости, параллельны.

Доказательство: Пусть а и b - 2 прямые, перпендикулярные плоскости . Допутим, что прямые а и b не параллельны.
Выберем на прямой b точку С, не лежащую в плоскости . Проведем через точку С прямую b1, параллельную прямой а. Прямая b1 перпендикулярна плоскости по теореме 2. Пусть В и В1 - точки пересечения прямых b и b1 с плоскостью . Тогда прямая ВВ1 перпендикулярна пересекающимся прямым b и b1. А это невозможно. Мы пришли к противоречию. Теорема доказана.
4,4(6 оценок)
Ответ:
polyakovred
polyakovred
20.05.2021
1) угол BAC=42-вписанный и опирается на дугу СВ, следовательно, по свойству вписанного угла, дуга СВ=2*42=84
Угол BOC-центральный и опирается на дугу СВ, следовательно, по свойству центрального угла, угол ВОС=дуге СВ=84

2) угол МОС = 90
Дуга СД- полуокружность =180
Из этих двух следует, что дугаСМ=дуге МД= 90 ( по свойству центрального угла)

Угол МСД вписанный и опирается на дугу МД=90, следовательно, угол МСД=45 (по свойству вписанного угла)

Угол МДС вписанный и опирается на дугу МС=90, следовательно, угол МДС = 45 (по свойству вписанного угла)

Угол МДС =180-45-45=90
4,7(1 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ