М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Soffik0611
Soffik0611
10.04.2023 21:08 •  Геометрия

Через точку, расположенную внутри треугольника, проведены прямые, параллельные сторонам треугольника. Эти прямые разбивают треугольник на три
треугольника и три четырёхугольника. Параллельные высоты трёх получившихся
треугольников равны 5, 6, 7. Найдите параллельную им Высоту исходного
треугольника.​

👇
Ответ:
лев652
лев652
10.04.2023

Из параллелограммов видно, что

a1 +a2 +a3 =A

Стороны параллельны - все треугольники подобны исходному.

a1/A =h1/H, ...

a1/A +a2/A +a3/A =A/A => h1/H +h2/H +h3/H =H/H => h1 +h2 +h3 =H

То есть H =5+6+7 =18


Через точку, расположенную внутри треугольника, проведены прямые, параллельные сторонам треугольника
4,7(97 оценок)
Открыть все ответы
Ответ:
sashenkakoster
sashenkakoster
10.04.2023
По уравнениям боковых сторон 3x+y=0 и -x+3y=0 видно, что они проходят  через начало координат - это одна из вершин треугольника: О(0;0).
Основание равнобедренного треугольника перпендикулярно его высоте (она же и биссектриса угла при вершине).
Находим уравнения биссектрис угла при вершине О:
\frac{A_1x+B_1y+C_1}{ \sqrt{A_1^2+B_1^2} } =+- \frac{A_2x+B_2y+C_2}{ \sqrt{A_2^2+B_2^2} }
1) (3х+у)/√10 = (-х+3у)/√10
    3х+у = -х+3у
    4х = 2у
     у = 2х  не подходит (проходит выше сторон треугольника).

2) (3х+у)/√10 = -(-х+3у)/√10
    3х+у = -(-х+3у)
    2х = -4у
     у = (-1/2)х.
    Уравнение перпендикулярной прямой у = 1/(-к)+в
    В нашем случае уравнение основания (назовём его АВ) будет таким:
    у = 1(1/2)х+в = 2х+в.
    Подставим координаты известной точки на основании (5;0):
    0 = 2*5+в  отсюда в = -10.
    Уравнение АВ: у = 2х-10  или 2х-у-10 = 0.
    Координаты вершин А и В находим как как точки пересечения боковых сторон с основанием.
\left \{ {3x+y=0} \atop {2x-y-10=0}} \right.
Сложив уравнения, получаем 5х-10 = 0, отсюда х = 10/5 = 2.
у = -3х = -3*2 = -6. Это точка А(2; -6).
\left \{ {{-x+3y=0} \atop {2x-y-10=0}} \right.
Умножим первое уравнение на 2 и сложим:
5у = 10,  у = 10/5 = 2,  х = 3у = 3*2 = 6.
Это точка В(6; 2).

ответ: вершины треугольника  О(0;0), А(2;-6), В(6;2).
4,4(28 оценок)
Ответ:
Пусть P - точка пересечения AM  и CD; и пусть BP пересекает AC в точке Q;
тогда из теоремы Чевы сразу следует
AQ/QC = AD/DB = 3;
из теоремы Ван-Обеля (следствие теоремы Чевы)
AP/PM = AD/DB + AQ/QC = 6;
Получилось, что в треугольнике CAM 1) угол С = 60°; 2) высота CP делит сторону AM на отрезки в отношении 6:1; 3) AC = 3; этого достаточно, чтобы решить задачу.
Если для краткости записи обозначить CP = h; MP = z; MC = y; AC = a = 3; то легко записать очевидные соотношения
y^2 = z^2 + h^2;
a^2 = (6*z)^2 + h^2;
(7*z)^2 = y^2 + a^2 - a*y; (это просто теорема косинусов, косинус 60° равен 1/2; напоминаю, что a = 3)
вычитая из второго уравнения первое, легко найти
a^2 - y^2 = 35*z^2;
остается исключить z, подставить a = 3; и получится квадратное уравнение для y; напомню, что ВС = 2*y;
(y^2 + a^2 - a*y)/49 = (a^2 - y^2)/35;
5*y^2 + 5*a^2 - 5*a*y = 7*a^2 - 7*y^2;
12*y^2 - 2*a^2 - 5*a*y = 0;
12y^2 - 15*y - 18 = 0; или BC^2 - (5/2)*BC - 6 = 0;
BC = 5/4 + √((5/4)^2 + 6) = (5 + √(25 + 16*6))/4 = (5 + 11)/4 = 4; (второй корень отпадает)
4,6(45 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ