Объяснение:
Воспользуемся формулой расстояния между двумя точками А и B на координатной плоскости с координатами А(х1;у1) и B(х2;у2):
|AB| = √((х1 - х2)² + (у1 - у2)²).
1) Найдем расстояние между точками A(-6;0) и B(0;8):
|AB| = √((-6 - 0)² + (0 - 8)²) = √((-6)² + (-8)²) = √(6² + 8²) = √(36 + 64) = √100 = 10.
Следовательно, расстояние между точками A(-6;0) и B(0;8) равно 10.
2) Найдем расстояние между точками M(8;0) и N(0;-6):
|MN| = √((8 - 0)² + (0 - (-6))²) = √((8)² + (-6)²) = √(8² +6²) = √(64 + 36) = √100 = 10.
Відповідь:
Площадь пересечения ромбов относится к площади объединения ромбов как 3/5.
Пояснення:
Ромб АВСД отразили относительно прямой ОО1, точки О и О1 являются соответственно серединами отрезков АД и ВС. При этом получился ромб А1В1С1Д1.
Найдем площадь ромба АВСД.
Sp = h × a
h = a × cos 30° = a × sqrt (3) / 2
Sp = a^2 × sqrt (3) / 2
Найдем площать треугольника АД1О.
Str = 1/2 × a/2 × h/2 = a^2 × sqrt (3) / 16
Найдем площадь пересечения ромбов ОД1ВО1В1Д.
Sперес. = Sp - 2 × Str = a^2 × sqrt (3) / 2 × ( 1 - 1/4 ) = a^2 × sqrt (3) / 2 × 3/4
Найдем площадь объединения ромбов АС1О1СА1О.
Sобъед. = Sp + 2 × Str = a^2 × sqrt (3) / 2 × ( 1 + 1/4 ) = a^2 × sqrt (3) / 2 × 5/4
Найдем отношение площади пересечения ромбов к площади объединения ромбов.
Sперес. / Sобъед. = 3/4 / 5/4 = 3/5