Чтобы рисунок соответствовал условию задачи, воспользуемся для его построения окружностями с центром в точке А и радиусом АВ, и с центром в точке D и радиусом СD. Обозначим середину ВС буквой М. Нужно доказать, что биссектриса угла D пересекает ВС в точке М. По условию АD=АВ+СD, следовательно, АВ=АК, КD=СD Треугольник АВК равнобедренный, АЕ - биссектриса, ⇒ АЕ- ещё и высота, и медиана. Высота треугольника перпендикулярна стороне, к которой проведена⇒ угол ВЕА=∠АЕК=90º. Δ АDС равнобедренный, биссектриса DН- его высота и медиана. ⇒ угол СНD=∠КНD=90º. В треугольнике КВС отрезки ВМ=МС по условию КН=НС, т.к. DН - медиана, ВЕ=ЕК, т.к. АЕ - медиана⇒ МН - средняя линия. и ЕМ- средняя линия ЕМ=КН, МН=ЕК, ⇒ МН||ВК и ЕМ||КН ∠МЕК=90º как смежный с ∠AEK, поэтому ∠ЕМН=90º как соответственный ∠ВЕМ при прямых MH||ВК и секущей МЕ. Четырехугольник ЕМНК - прямоугольник. . Через одну точку на прямой можно провести только один перпендикуляр. ⇒ НМ - продолжение DН. ⇒ Биссектриса DМ угла D проходит через середину стороны ВС, ч.т.д.
Дано :
Четырёхугольник ABCD - параллелограмм.
Отрезок DB - диагональ = 13 см.
∠ABD = 90°.
CD = 12 см.
Найти :
S(ABCD) = ?
AB ║ CD (по определению параллелограмма).
Рассмотрим накрест лежащие ∠ABD и ∠BDC при параллельных прямых АВ и CD и секущей BD.
При пересечении двух прямых секущей накрест лежащие углы равны.То есть -
∠ABD = ∠BDC = 90°.
Тогда отрезок BD - ещё и высота параллелограмма ABCD (по определению).
Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.Следовательно -
S(ABCD) = BD*CD
S(ABCD) = 13 см*12 см
S(ABCD) = 156 см².
156 см².