Противолежащие стороны параллелограмма равны (из свойства фигуры параллелограмм).
=> BC=AD=12 (см) => BK=12-5=7 (см).
Так как АК - биссектриса (по условию), то она делит угол А так, что углы ВАК и КАD равны между собой.
Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны (из определения).
=> при пересечении двух параллельных прямых секущей накрест лежащие углы равны.
=> угол ВКА = углу КАD, а они накрест лежащие при ВС || АD и секущей АК.
В равнобедренном треугольнике две боковые стороны равны и углы при основании тоже равны (из свойства равнобедренного треугольника).
=> треугольник АВК - равнобедренный (угол ВАК = углу ВКА) и АВ=ВК=7 (см).
Периметр параллелограмма равен удвоенной сумме 2х его соседних сторон (из теоремы о периметре параллелограмма).
=> Р=2*AB+2*AD=2*7+2*12=14+24=38 (см).
ответ: Р параллелограмма АВСD равен 38 (см).
Так как один из углов, образованных диагоналями, равен 120°, то остальные углы: 120°, 60°, 60°
Диагонали прямоугольника в точке пересечения делятся пополам,
следовательно: OA=OB=OC=OD.
И треугольники АОВ и СОD - равнобедренные с углом при вершине 60°.
Следовательно, они равносторонние и:
∠АВО = ∠ВАО = ∠OCD = ∠CDO = 60°
Тогда:
∠ОВС = ∠ОСВ = ∠OAD = ∠ODA = 30°
AB² + BC² = AC²
AB*BC = 16√3 => BC = 16√3 /AB
AB² + (16√3 /AB)² = AC²
Так как ∠ВСА = 30°, то АC = 2АB
AB² + (16√3 /AB)² = 4AB²
(16√3 /AB)² = 3AB²
768/AB² = 3AB²
AB⁴= 256
АВ = 4 ВС = S/AB = 16√3 / 4 = 4√3
ответ: 4; 4√3