Отметьте точки A, B, C, D так, чтобы точки А, В, С лежа- каждые две точки проведите прямую. Сколько получилось ли на одной прямой, а точка не лежала на ней. Через прямых? шап те на ней точки А и В. Отметь-
1. В равностороннем тр-ке углы равны по 60°. значит любой внешний угол тр-ка будет 180-60=120°. 2. Зная половину стороны равностороннего тр-ка легко подсчитать его периметр. Р=8·2·3=48 см. 3. Задачу можно решить логически. В тр-ках АВС и АLС ∠С общий, угол при вершине А в них отличается в два раза, а разница в углах при третьей вершине (В и L) всего в 2°,значит биссектриса делит вершину А на два угла по 2°. Если ∠ВАС=4° и ∠LАС=2°, то ∠АСВ=180-4-114=180-2-116=62° - это ответ. Ошибка в условии очевидна. Поменяли местами размеры углов АВС и АЛС.
Прощадь ромба S = a^2*sin(α) Площадь каждой из трёх равновеликих фигур S = a^2*sin(α)/3 Две фигуры - это треугольники АВЕ и AFD, третья - четырёхугольник AECF Четырёхугольник AECF в свою очередь состоит из двух равных треугольников AEC и ACF Значит площадь треугольника ABE в два раза больше площади треугольника AEC AH - высота для треугольника ABE и треугольника AEC АН = АB*sin(HBA) = AB*sin(BAD) = a*sin(α) Т.к. высота для треугольника ABE и треугольника AEC общая, то их площади относятся как основания треугольников и ВЕ = 2EC = 2/3a По теореме косинусов AE^2 = AB^2 + BE^2 - 2*AB*BE*cos(π-α) = a^2 + 4/9*a^2 + 2*a*2/3*a*cos(α) = 13/9*a^2 + 4/3*a^2*cos(α) = a^2*(13/9 + 4/3*cos(α)) AE = a*(13/9 + 4/3*cos(α))^(1/2)
2. Зная половину стороны равностороннего тр-ка легко подсчитать его периметр. Р=8·2·3=48 см.
3. Задачу можно решить логически.
В тр-ках АВС и АLС ∠С общий, угол при вершине А в них отличается в два раза, а разница в углах при третьей вершине (В и L) всего в 2°,значит биссектриса делит вершину А на два угла по 2°.
Если ∠ВАС=4° и ∠LАС=2°, то ∠АСВ=180-4-114=180-2-116=62° - это ответ.
Ошибка в условии очевидна. Поменяли местами размеры углов АВС и АЛС.