АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1
---------
Сделаем рисунок данного треугольника АСВ.
Опустим из С высоту СН на АВ.
Треугольник СНВ - прямоугольный, сумма острых углов прямоугольного треугольника 90°⇒
∠НСВ=60°
Катет СН противолежит углу 30° ⇒
СН=СВ:2 по свойству катета против угла 30°
Так как и СD=СВ:2, СН=СD⇒
треугольник НСD -равнобедренный.
Т.к. угол НСD =60°, а углы при основании НD равны. то
∠СНD=∠СDН=60°
Следовательно, треугольник СНD- равносторонний, НD=СН
Угол АСН=105°-60°=45°
Отсюда ∠ САН=90°-45°=45°
Δ АСН- равнобедренный, АН=СН=НD ⇒
ΔАНD - равнобедренный.
Угол АНD= ∠AHC+∠CHD= 90°+60°=150°
Угол DАН=(180°-150°):2=15° ⇒
Угол ВАD=15°
-------
[email protected]