1. Пусть есть две ПРОИЗВОЛЬНЫЕ касающиеся окружности радиусов r и R, и к ним проведена общая внешняя касательная. Если провести радиусы в точки касания и линию центров, то получится прямоугольная трапеция с основаниями r и R и боковой стороной r + R;откуда длину касательной d (между точками касания) легко найти (r + R)^2 = d^2 + (R - r)^2; d = 2√(R*r); 2. В данном случае есть ТРИ пары окружностей радиуса x, r = 4; R = 9; причем сумма длин внешних касательных между первой и второй, первой и третьей равна длине внешней касательной между второй и третьей. d = d1 + d2; 2√(R*x) + 2√(r*x) = 2*√(R*r); x = R*r/(√R + √r)^2 = 9*4/(3 + 2)^2 = 36/25;
Площадь основания шарового сегмента S=πr². 64π=πr². Отсюда r=8 ( Радиус основания сегмента) Площадь сферической поверхности шарового сегмента S=2πRh, где R- радиус шара. 100π=2πRh, отсюда 2Rh=100. По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r². Отсюда h=√(100-64)=6. R=100/(2*6)=8и1/3. Вот теперь знаем и R, и h. Формула объема шарового сегмента V=πh²(R-(1/3)*h)). Подставляем известные значения и имеем: V =π*36*(8и1/3-2)=228π. ответ: V = 228π.
(r + R)^2 = d^2 + (R - r)^2; d = 2√(R*r);
2. В данном случае есть ТРИ пары окружностей радиуса x, r = 4; R = 9;
причем сумма длин внешних касательных между первой и второй, первой и третьей равна длине внешней касательной между второй и третьей.
d = d1 + d2;
2√(R*x) + 2√(r*x) = 2*√(R*r);
x = R*r/(√R + √r)^2 = 9*4/(3 + 2)^2 = 36/25;