81√3 ед²
Дано: КМРТ - трапеция, КМ=РТ, ∠Т=60°, КР⊥РТ; КТ=12√3. Найти S(КМРТ).
Рассмотрим ΔКРТ - прямоугольный; ∠РКТ=90-60=30°, значит, РТ=0,5КТ=6√3 по свойству катета, лежащего против угла 30 градусов.
Проведем высоту РН и рассмотрим ΔРТН - прямоугольный;
∠ТРН=90-60=30°, значит, ТН=0,5РТ=3√3.
Найдем РН по теореме Пифагора:
РН²=РТ²-ТН²=108-27=81; РН=9.
Найдем МР. ∠МРК=∠РКН=30° как внутренние накрест лежащие при МР║КТ и секущей КР; ∠МКР=60-30=30°, значит, ΔКМР - равнобедренный, МР=КМ=6√3.
S(КМРТ)=(МР+КТ)/2 * РН = (6√3+12√3)/2 * 9=(9√3)*9=81√3 ед²
ответ: arctg(√2tgα).
Объяснение:"Углом между указанными плоскостями MDC и АВС является угол, стороны которого – лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру".
1) ΔДОС: ОД=ОС по свойству диагоналей квадрата,
ОЕ- медиана по условию ⇒ОЕ- высота и ∠ОЕС=90°.
2) ΔОЕС: ∠ОЕС=90°, пусть ДС=а, тогда ОЕ=ЕС=а/2,
ОС²=(а/2)²+(а/2)²=а²/4 + а²/4= 2а²/4= а²/2;
ОC=а:√2= (а√2) :2.
ОМ:ОС=tgα ⇒ ОМ=ОС*tgα= (а√2) :2 * tgα= (а√2*tgα) :2.
3) ΔОМЕ: ОМ⊥ пл.АВС, ОЕ⊂пл.АВС ⇒ ОМ⊥ОЕ.
tg∠ОЕМ = ОМ:ОЕ = (а√2*tgα):2 :а/2= (а√2*tgα):а= √2tgα;
4) ОЕ⊂пл.АВС, ОЕ⊥ДС, МЕ- наклонная к пл.АВС,
ОЕ- проекция МЕ на пл.АВС ⇒
⇒ по теореме о трёх перпендикулярах МЕ ⊥ ДС.
пл.АВС ∩ пл.ДМС= ДС, МЕ ⊂ пл.ДМС и МЕ⊥ДС,
ОЕ ⊂ пл.АВС и ОЕ⊥пл. АВС ,
значит ∠(МДС;АВС)=∠ОЕМ= arctg(√2tgα).