Объяснение: 1.1 так как ДЕ проведен из середин боковых сторон следовательно стороны AB и BC делятся пополам на отрезки по 1,5 см =3/2
1.2 он равен 3 так как в условии это уже указано(AB=BC=3)
1.3 ДЕ = 2 так как он средняя линия треугольника
2.1 Векторы равны так как направлены в одно сторону и имеют одинаковую длину( делятся пополам точкой Е)
2.2 Векторы равны так как направлены в одно сторону и имеют одинаковую длину(делятся пополам точкой D)
3.1 Они равны, но не сонаправлены(направлены в одну сторону)
3.2 Они равны и сонаправлены(направлены в одну сторону)
4. Противоположные векторы - имеют одинаковую длину и противоположное направление.
5.1 Они направлены в одну сторону так как угол между основанием о боковой стороной одинаковый
5.2 Так как ДЕ средняя линия то она параллельная основанию АЦ
6. Противоположно направленный вектор может быть любой длины главное чтобы в противоположную сторону.
7. Коллинеарные вектора - ненулевые вектора(нулевые это точка), которые лежат на одной прямой или они параллельны, вне зависимости от направления и длины.
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида) . Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана. 2) Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине.
Теорема: Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним
Доказательство. Пусть ABC – данный треугольник. По теореме о сумме углов в треугольнике ∠ ABС + ∠ BCA + ∠ CAB = 180 º. Отсюда следует ∠ ABС + ∠ CAB = 180 º - ∠ BCA = ∠ BCD Теорема доказана.
Из теоремы следует: Внешний угол треугольника больше любого угла треугольника, не смежного с ним. 3) Сумма углов треугольника = 180 градусов. Если один из углов прямой (90 градусов) на два остальных приходится тоже 90. значит, каждый из них - меньше 90 то есть они - острые. если один из углов - тупой, то на два остальных приходится менее 90 то есть они явно острые. 4) тупоугольный - больше 90 градусов остроугольный - меньше 90 градусов 5) а. Треугольник, у которого один из углов равен 90 градусов. б. Катеты и гипотенуза 6) 6°. В каждом треугольнике против большей стороны лежит больший угол и обратно: против большего угла лежит большая сторона. Любой отрезок имеет одну и только одну середину. 7) По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, значит гипотенуза больше каждого из катетов 8) --- тоже самое, что и 7 9) сумма углов треугольника равно 180 градусов. а если бы аждая сторона треугольника была бы больше суммы двух других сторонон, то сумма углов была бы больше 180, что невозможно. следовательно - каждая сторона треугольника меньше суммы двух других сторон. 10) Сумма углов любого треугольника равна 180 градусам. Т. к. этот треугольник прямоугольный, то один из углов у него прямой, т. е. равен 90 градусам. Следовательно, сумма двух других острых углов равна 180-90=90 градусов. 11) 1. рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольни BCD в котором угол B = углу D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, что и требовалось доказать.2. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.докажем это.рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу(т.к. против равных строн лежат равные углы), поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,что и требовалось доказать.
ответ: 1.1 AD=1,5; 1.2 CB=3; 1.3 DE=2;
2.1 BE= EC; 2.2 AD=DB;
3.1 Нет; 3.2 Да;
4.1 DB; 4.2 BE;
5.1 AD, DB; 5.2 AC;
6.1 CA; 6.2 CE;
7.1 DE; 7.2 BE;
Объяснение: 1.1 так как ДЕ проведен из середин боковых сторон следовательно стороны AB и BC делятся пополам на отрезки по 1,5 см =3/2
1.2 он равен 3 так как в условии это уже указано(AB=BC=3)
1.3 ДЕ = 2 так как он средняя линия треугольника
2.1 Векторы равны так как направлены в одно сторону и имеют одинаковую длину( делятся пополам точкой Е)
2.2 Векторы равны так как направлены в одно сторону и имеют одинаковую длину(делятся пополам точкой D)
3.1 Они равны, но не сонаправлены(направлены в одну сторону)
3.2 Они равны и сонаправлены(направлены в одну сторону)
4. Противоположные векторы - имеют одинаковую длину и противоположное направление.
5.1 Они направлены в одну сторону так как угол между основанием о боковой стороной одинаковый
5.2 Так как ДЕ средняя линия то она параллельная основанию АЦ
6. Противоположно направленный вектор может быть любой длины главное чтобы в противоположную сторону.
7. Коллинеарные вектора - ненулевые вектора(нулевые это точка), которые лежат на одной прямой или они параллельны, вне зависимости от направления и длины.