60 см^2.
Объяснение:
1) Диагональ и две смежные стороны прямоугольника образуют прямоугольный треугольник, для сторон которого верна теорема Пифагора.
2) Пусть х см - меньшая сторона прямоугольника, тогда (17-х) см - его большая сторона.
х^2 + (17-х)^2 = 13^2
х^2 + 289 - 34х + х^2 - 169 = 0
2х^2 - 34х + 120 = 0
х^2 - 17х + 60 = 0
D = 289 -240 = 49
x1 = (17-7):2 = 5
x2 = (17+7):2 = 12 - не удовлетворяет условию.
3) Меньшая сторона прямоугольника равна 5 см, тогда большая его сторона равна 17-5=12(см).
S = 5•12 = 60(см^2)
Точки K, E, N , F середины сторон AB,BC,CD и DA выпуклого четырехугольника ABCD. известно что AC=BD=30 см. найдите периметр четырехугольника KENF
Объяснение:
ΔАВС , КЕ-средняя линия , тк по условию точки K, E-середины сторон AB,BC. По т. о средней линии КЕ=1/2*АС=1/2*30=15 (см).
ΔАDС , NF-средняя линия , тк по условию точки N,F-середины сторон CD,DA. По т. о средней линии NF=1/2*АС=1/2*30=15 (см)
ΔАВD , КF-средняя линия , тк по условию точки K, F-середины сторон AB,AD. По т. о средней линии КF=1/2*BD=1/2*30=15 (см)
ΔВСD , EN-средняя линия , тк по условию точки E, N-середины сторон BC,CD. По т. о средней линии ЕN=1/2*BD=1/2*30=15 (см)
P=4*15=60 *см).