1. Если принять значение первого угла за одну часть общего угла, соответственно второй угол будет равен четырем частям (из условия задачи), следовательно 4-1=3, а по условию задачи, их разница равна 108. Теперь делим 108 на 3, получаем, что одна часть общего угла равна 36 градусам, следовательно первый угол будет равен 36 градусам (1*36), а второй 144 градуса (4*36). В сумме, они дают 180 градусов, из чего можно сделать вывод, что прямые, которые пересекает прямая, образующая эти углы, параллельны между собой.
2. Углы АВС и ВСД равны, так как они накрест лежащие. Отсюда делаем вывод, что треугольники АВС и ВСД равны по двум сторонам (АВ=СД и СВ - общая) и углу между ними.
Дано:
OP=8
Угол OSP=45 градусов
Угол SPK=90 градусов
Угол POS=90 градусов
Сумма углов треугольника 180 градусов, чтобы найти угол OPS нужно из 180 вычесть сумму других (2) углов, 180-(90+45)=45 градусов - угол OPS
Угол OPS = углу OSP следовательно треугольник OPS равнобедренный, у равнобедренного треугольника боковые стороны равны следовательно PO=OS=8
Угол POS и угол POK - смежные, суммы смежных углов равна 180 градусов, 180-90=90 градусов - угол POK
Угол OPS входит в состав угла KPS, а значит 90-45=45 - угол OPK, сумма углов треугольника рана 180 градусов, 180-(90+45)=45 - угол PKO, углы при основание равны значит треугольник равнобедренный, у равнобедренного треугольника боковые стороны равны следовательно PO=KO=8, KS состоит из KO и OS следовательно 8+8=16 - KS
ответ: OS=8, KS=16
Всё расписала, чтобы было понятно что и откуда взялось)
обозначим треугольник ABC, D - середина AB, H - центр вписанной/описанной окружности, проекция точки К на плоскость треугольника. Ищем KH.
треугольник ADK прямоугольный. AB/2 = AD = sqrt(AK^2 - AD^2) = sqrt(13-4) = 3.
Если сторона равностороннего треугольника AB = 2*3 =6, то радиус описанной окружности AH = 6/sqrt(3) = 2 sqrt(3)
треугольник AHK прямоугольный. KH = sqrt(AK^2 - AH^2) = sqrt(13 - 12) = 1