Рисунок к заданию во вложении
По рисунку,
Дано:
флагшток, тросс и расстояние от точки основания флагштока до места крепления троса на земле, составляют прямоугольный треугольник, где:
флагшток (b) - катет
расстояние от основания до места крепления (а) - катет
тросс (с) - гипотенуза
флагшток, закрепленный вертикально, перпендикулярен земле угол, между а и b = 90°.
Найти: длину катета а.
Решение: по теореме Пифагора:
c²=a²+b²
a=√(c²-b²)
c=6.5 м
b=6.3 м
a=√(6.5²-6.3²) м
a=√2.56 м
a=1.6 м
ответ: расстояние от точки основания флагштока до места крепления троса на земле равно 1.6 м
Т.к. АВСД - ромб, то у него все стороны равны, диагонали пересекаются под прямым углом и в точке пересечения делятся по-полам. АО=ОС; ВО=ОД=3см (6/2).
Прямая ОК перпендикулярна плоскости, значит и перпендикулярна всем прямым на этой плоскости. ОК перпендикулярна прямым ВД и АС.
Рассмотрим треугольник АОВ - прямоугольный. По теореме Пифагора
АО= sqrt(АВ^2- ВО^2)=sqrt(25-9)=4см
Опускаем наклонные из точки К к прямым АО и ВО.
Из треугольника АОК- прямоугольного по теореме Пифагора АК=sqrt(64+16)=sqrt(80)= 4sqrt(5)/
Из треугольника ВКО - прямоугольного, ВК= sqrt(64+9)=sqrt(73) см
ОТВЕТ:sqrt(80); sqrt(73).
я не знаю. ресуяцяцчемотшога вуяуспинрнаквкческа