1)Рассуждаем: если одна сторона прямоугольника х, то противоположная сторона также х.
2)Из периметра 20 вычитаем 2х, те (20-2х) -это то, что осталось от периметра на две другие, также равные друг другу противоположные стороны.
Тогда каждая из этих сторон будет равна (20-2х)/2=10-x
3) Итак выяснили, что стороны прямоугольника (попарно) есть х и 10-х.
4) Тогда площадь прямоугольника выразится как х·(10-х)=24.
Получим квадратное уравнение: х²-10х+24=0
Откуда х=6 и х=4 (тогда другая , смежная сторона будет 10-х т.е 4 или 6)
5) Вывод: прямоугольник с площадью 24см² должен иметь стороны 6см и 4 см.
Ну а к вопросу о том, что нужно начертить прямоугольный треугольник площадь которого в 2 раза меньше, чем площадь ранее рассмотренного прямоугольника, вообще никаких у Вас затруднений не вызовет-нужно просто провести любую диагональ в прямоугольнике. Она и разделит этот прямоугольник на два равных прямоугольных треугольника, каждый из которых будет в 2 раза меньше площади прямоугольника.
Удачи и здоровья!
Проведем высоту МН треугольника АМС. Т.к. плоскость ∆ АМС перпендикулярна плоскости ∆ АВС, МН лежит в плоскости АМС, перпендикулярна АС ⇒ перпендикулярна линии их пересечения.
Если прямая, лежащая в одной из двух перпендикулярных плоскостей, перпендикулярна линии их пересечения, то она перпендикулярна и другой плоскости.
1)
В ∆ АВС угол АСВ-90° ( дано), МС- наклонная. Её проекция НС⊥ВС, по т. о 3-х перпендикулярах МС⊥ВС. Доказано.
2)
•МН перпендикулярна плоскости АВС, ⇒ перпендикулярна любой прямой, проходящей через Н.
∆ ВМН прямоугольный с прямым углом МНВ.
Гипотенуза ∆ ВМН общая с ∆ ВСМ.
По т.Пифагора ВМ=√(BC²+MC²)=√15
•∆AMC - равнобедренный, высота МН - медиана. АН=СН=1,5
По т.Пифагора МН=√(MC²-˙HC*)=√3,75=√(375/100)=0,5√15
•Искомый угол - угол между МВ и её проекцией ВН на плоскость АВС
sin∠MBH=MH:MB=0,5√15:√15=0,5- это синус 30°
3) ВС⊥АС, ВС⊥МС, ⇒ ВС перпендикулярна плоскости АМС
Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.⇒
Плоскость BМС перпендикулярна плоскости AМС.
Проведем ЕН║ВС, КЕ║АС.
ЕН параллельна плоскости ВМС
Если прямая и плоскость параллельны, то расстояние между ними одинаково в каждой точке прямой.
Следовательно, расстояние НР от т.Н до плоскости ВМС равно расстоянию от т.Е до той же плоскости.
Расстояние от прямой до плоскости равно длине отрезка их общего перпендикуляра.
Н⊥МС, НР - высота прямоугольного треугольника СМН.
НР=СН•МН:МС
НР=1,5•0,5√15:√6=0,75√5•√3:(√3•√2)
НР=0,75√10•√2:2=0,375√10 ≈1,186 см