Объяснение:
1 -е задание отправили, как я понял. Его решать не надо.
***
2. ABCD - четырехугольник. CD=8 см. AC - диагональ.
По теореме Пифагора
AD=√17²-8²=√289-64=√225=15 см.
***
3. Высота в равнобедренном треугольнике является его медианой и биссектрисой. Следовательно:
АЕ=СЕ=24/2=12см.
Боковая сторона АВ=ВС=√12²+5²=√144+25=√169=13 см.
***
4. ABCD - трапеция. ВЕ и СF высоты Из ΔАВЕ АЕ=√10²-8² =√100-64=√36=6 см.
АЕ=DF=6 см. AD =ВС+2*АЕ=7+2*6= 19 см.
S трапеции =h(a+b)/2=8(7+19)/2=8*26/2 =104 см ².
***
5. Из ΔACD
√(5x)²-x² = 12;
√25x²-x²=12;
√24x²=12;
2x√6=12;
x=√6 см - сторона АВ=CD
AC=5√6 см.
Площадь ΔАВС=S(ABCD)/2=12*√6/2 = 6√6 см ².
С другой стороны SΔABC=AC*BH/2=6√6 см ².
Откуда BH=2S/AC=12√6: 5√6= 2.4 см.
Теорема про суму кутів трикутника стверджує, що у евклідовому просторі сума кутів трикутника дорівнює 180°.
Объяснение:
Еквівалентні формулювання такі. Сума кутів трикутника дорівнює π радіан, розгорнутому куту, двом прямим кутам, або пів-оберту.
Довгий час було не відомо, чи буде в інших геометріях сума кутів відмінною. Пошук відповіді на це питання суттєво вплинув на математику у 19 столітті. Врешті-решт, було отримано позитивну відповідь: в інших просторах (геометріях) сума кутів трикутника може бути більше або менше, і сума кутів залежить від вибраного трикутника. Відмінність суми від 180° називається дефектом трикутника і використовується як характеристика геометрії простору.