чтобы разложить векторы по указанным векторам, можно представлять, что "как будто вы вышли из вершины А и идете по ребрам призмы в вершину С и записываете свой путь"...
из точки А могу "пройти" в точку В (это вектор АВ); из В могу "пройти" в точку С (это вектор ВС)...
но перемещение из А в В (вектор АВ) по длине в точности равно
перемещению из С в D (вектору CD), только направление в другую сторону... направление "показывает" знак "минус"
Дан прямоугольный треугольник с катетами "а" и "в". Радиус "R" его описанной окружности равен 6,5, а радиус "r" вписанной окружности равен 2.
Если радиус описанной окружности равен 6,5, то гипотенуза равна 2*6,5 = 13. Отрезки катетов до точки касания вписанной окружности равны а - 2 и в - 2. По свойству касательных гипотенуза равна сумме этих отрезков: а - 2 + в - 2 = 13 или а + в = 17. По Пифагору 13² = а² + в². Возведём в квадрат равенство а + в = 17: а² + 2ав + в² = 289. Заменим а² + в² = 169. 2ав = 289 - 169 = 120, ав = 120/2 = 60. Из выражения а + в = 17 выразим в = 17 - а и подставим в ав = 60. Подучим: а(17 - а) = 60 или 17а - а² = 60. Получили квадратное уравнение а² - 17а + 60 = 0. Квадратное уравнение, решаем относительно a: Ищем дискриминант: D=(-17)^2-4*1*60=289-4*60=289-240=49;Дискриминант больше 0, уравнение имеет 2 корня: a_1=(√49-(-17))/(2*1)=(7-(-17))/2=(7+17)/2=24/2=12;a_2=(-√49-(-17))/(2*1)=(-7-(-17))/2=(-7+17)/2=10/2=5. Полученные результаты и есть размеры катетов.
Объяснение:
Вектор -это направленное перемещение.
чтобы разложить векторы по указанным векторам, можно представлять, что "как будто вы вышли из вершины А и идете по ребрам призмы в вершину С и записываете свой путь"...
из точки А могу "пройти" в точку В (это вектор АВ); из В могу "пройти" в точку С (это вектор ВС)...
но перемещение из А в В (вектор АВ) по длине в точности равно
перемещению из С в D (вектору CD), только направление в другую сторону... направление "показывает" знак "минус"
вектор АВ = вектору DC
вектор DC = "минус" вектор CD