Радиус вписанной окружности равен отношению площади треугольника к его периметру. найдем периметр: р=5*2+6=16. найдем площадь треугольника, для этого проведем из вершины к основанию высоту. так как в равнобедренном треугольнике высота является также и медианой, то основание разделилось на две равные части (6/2=3). найдем высоту по теореме пифагора: h²=5²-3²=25-9=16 h=4. теперь находим площадь треугольника, которая равна половине произведения основания на высоту: s=1/2*6*4=12 находим радиус вписанной окружности: r=s/p=12/16=0,75
Поскольку угол тупой, то это не может быть угол при основании. А поскольку треугольник равнобедренный, то углы при основании равны (180-120)/2=30, а наша медиана также является биссектрисой и высотой. Значит нам нужно найти катет трямоугольного треугольника с углами 30 и 60 градусов, второй катет которого равен √21. Мы знаем углы, знаем один из катетов, значит второй катет мы можем вычислить через тангенс угла. Tg30=1/√3 это отношение противолежащего катета к прилежащему. Прилежащий нам известен. Получаем равенство: 1/√3=х/√21 х=√21/√3=√7 Медиана равна √7см