тогда площадь диагонального сечения равна 12√2х²=48√2/см²/
Верный ответ а) 48√2 см²
Приношу извинения. что не могу использовать приложение/не работает/, чтобы изобразить параллелепипед, но это совсем легко, в любом учебнике он изображен стандартно.
Пусть BC=a, AC=b, AB=c, P=a+b+c и r - радиус вписанной окружности. Тогда т.к. cos(ABC)=1/2, то по т. косинусов b²=a²+c²-aс. Кроме того, a²+c²=(a+c)²-2ac=(P-b)²-2ac, значит подставляя это в т. косинусов, получим b²=(P-b)²-2ac-aс, откуда ac=((P-b)²-b²)/3=(P-2b)P/3. Значит площадь S треугольника ABC равна S=(1/2)*ac*sin(60°)=(P-2b)P/(4√3)=P*r/2, откуда r=(P-2b)/(2√3)=(15-2·6)/(2√(3π))=√3/(2√π). Значит площадь вписанного круга равна π·r²=π·3/(4π)=3/4.
более короткий). Если обозначить через x,y,z отрезки на которые точки касания вписанной окружности разбивают стороны треугольника, то получим x+y+z=P/2 и x+y=b, откуда z=P/2-b. Т.к центр впис. окружности лежит на биссектрисе угла в 60 градусов, то r=z·ctg(30°)=(P-2b)/(2√3).
пусть х - коэффициент пропорциональности.
Из условия ясно, что АВ=ВС=СD=AD=А₁В₁=В₁С₁=С₁D₁=A₁D₁=3x
CC₁=AA₁=4x; АС=√(АВ²+ВС²)=√(9х²+9х²)=3√2*х
A₁B=√(AA₁²+AB²)=√(16x²+9x²)=5x
Диагональное сечение прямоугольник А₁С₁СА, его площадь равна
АС*СС₁=3√2х*4х=12√2х²
Найдем х
(ВС+СС₁+D₁C₁+D₁A₁+A₁B)=3x+4x+3x+3x+5x=36⇒x=36/18=2
тогда площадь диагонального сечения равна 12√2х²=48√2/см²/
Верный ответ а) 48√2 см²
Приношу извинения. что не могу использовать приложение/не работает/, чтобы изобразить параллелепипед, но это совсем легко, в любом учебнике он изображен стандартно.