М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Кличяня
Кличяня
31.07.2022 02:02 •  Геометрия

Геометрия 8 класс надо СОР.


Геометрия 8 класс надо СОР.
Геометрия 8 класс надо СОР.

👇
Открыть все ответы
Ответ:
Саша77777777
Саша77777777
31.07.2022
1.Боковое ребро правильной четырёхугольной пирамиды равно 4 см и образует с плоскостью основания пирамиды 45°.
Найти: 
а) высоту пирамиды; 
б) площадь боковой поверхности пирамиды
-------
Пирамида называется правильной, если ее основание – правильный многоугольник, а высота проходит через центр основания.
В треугольнике АSС, содержащем высоту пирамиды,  углы при основании АС равны 45º
Тогда  его медиана ( высота, биссектриса) SO равна ОС- половине ОС=SC:sin 45º=2√2. 
Высота пирамиды равна 2√2 см.
AB=BC=CD
Углы треугольников. образованных диагоналями при их пересечении, равны 45º ( свойство диагоналей квадрата)⇒
СD=AD=2√2*sin45º=4⇒
боковые грани пирамиды - правильные треугольники. 
Формула площади правильного треугольника 
 S=a²√3):4
S=16√3:4
Боковых граней 4. Площадь боковой поверхности 4S=16√3 см²
-----------
2. Ребро правильного тетраэдра DABC = а. Постройте сечение тетраэдра, проходящее через середину ребра DA параллельно плоскости DBC, и найдите площадь этого сечения.
--
Сечение, проходящее через середину одного ребра тетраэдра и параллельное противолежащей грани, проходит через середины всех ребер, выходящих из одной вершины,  и образует треугольник, подобный боковой грани. 
Площади подобных фигур относятся как квадрат коэффициента подобия. 
k=1/2
Пусть S - площадь грани, а S₁ - площадь сечения
S₁:S=k²=1/4. 
S ∆ DBC=a²√3):4
S сечения =S ∆ DBC:4=a²√3):16
10 класс. если можно, то с рисунками, 1.боковое ребро правильной четырёхугольной пирамиды равно 4 см
4,7(43 оценок)
Ответ:
Основные инвариантные свойства параллельного проецирования:
1. Проекция точки есть точка.
2. Проекция прямой на плоскость есть прямая.
3. Если в пространстве точка принадлежит линии, то проекция этой точки принадлежит проекции линии.
4. Проекции взаимно параллельных прямых также взаимно параллельны, а отношение отрезков таких прямых равно отношению их параллельных проекций.
Пусть А1 и В1 параллельные проекции вершин квадрата АВСD, а точка О1 проекция его центра. Из основных инвариантных свойств имеем: точка О1 делит проекции диагоналей квадрата пополам. Проводим прямые А1О1 и В1О1 и на их продолжениях откладываем отрезки О1С1 и О1D1, равные отрезкам А1О1 и В1О1. Соединив точки А1,В1,С1 и D1, получаем изображение квадрата АВСD.

Точки a1 и b1 -параллельные проекции вершин квадрата abcd, точка o1 -проекция его центра. постройте
4,8(46 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ