Нарисуем трапецию АВСД. Проведем линию КМ, соединяющую середины оснований. ВК=КС=6:2=3 АМ=МД=11:2=5,5 Опустим высоту КН, для того, чтобы из треугольника КНМ найти затем КМ. Проведем КЕ параллельно АВ и КТ параллельно СД. АЕ=ВК=ТД=КС=3 КЕ=ВА=3 КТ=СД=4 ЕТ=АД-АЕ-ТД=11-3-3=5 Получен треугольник КЕТ со сторонами 3,4,5. Найдем площадь треугольника КЕТ по форуле Герона. Вычисления приводить не буду, не в них смысл данного решения. S КЕТ=6 Высоту КН треугольника КЕТ найдем из площади треугольника . S(КЕТ)=ЕТ*КН:2 КН=2S:ЕТ=12:5=2,4 По т. Пифагора из прямоугольного треугольника КНТ найдем НТ. НТ равна 3,2 ( опять же не привожу вычисления - можно проверить). НМ=НД-МД МД=5,5 по условию. НД=ТД+НТ=3+3,2=6,2 НМ=6,2-5,5=0,7 КМ найдем по т. Пифагора: КМ²=КН²+МН²=2,4²+0,7²=6,25 КМ=√6,25=2,5 см
дано: решение
c = 17 (см) p = a + b + c
a = x пусть катет a = x, тогда катет b = x - 7
b = x - 7 так как треугольник прямоугольный, то
x мы найдем по теореме пифагора:
p - ? c² = x² + (x - 7)²
17² = x² + x² - 14x + 49
2x² - 14x + 49 - 289 = 0
2x² - 14x - 240 = 0
d₁ = 7² - 2 * (-240) = 49 - (-480) = 529
d₁ > 0, уравнение имеет 2 корня.
x₁ = -(-7) + √529 / 2 = 7 + 23 / 2 = 30 / 2 = 15
x₂ = -(-7) - √529 / 2 = 7 - 23 / 2 = -16 / 2 = -8
второй корень уравнение не подойдет, т.к он имеет отрицательное значение, а длина не может быть отрицательным числом, значит x = 15.
a = 15
b = 15 - 7 = 8
p = 17 + 15 + 8 = 40 (см)
ответ: p = 40 (см)