На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение:
73/62
Объяснение:
Треугольник, который образовался когда провели биссектрису и высоту - прямоугольный. Т.к. один угол прямоугольного треугольника равен 17 градусам, то второй будет равен 90-17=73
А если имеется в виду треугольник, который был дан изначально, то больший острый угол будет равен 62 градусам. В мелком треугольнике мы нашли второй острый угол. Он смежный с другим углом, равным 180-75=107. В треугольнике, в котором находится этот смежный угол, нам известен еще один, равный 45 градусам (Мы это узнали, когда 90 градусов разделили на два - была биссектриса). Тогда узнать третий угол данного треугольника не сложно - 180-107-45=28 градусов. Итак, мы разобрали два треугольника, которые находятся в основном треугольном. остался третий. Он появился, когда мы провели высоту. Нам известен один угол, равный 45 градусам (он появился из-за биссектрисы). В этом углу содержатся еще два угла, один из которых равен 17 градусам. Посчитаем второй - 45-17=28 градусов. И вот в треугольнике нам известны два угла - один прямой (он был образован биссектрисой), а второй равен 28 градусам. Посчитаем третий угол - 180-90-28=62 градуса. Это и есть второй острый угол основного прямоугольного треугольника. Схему прикрепить не могу, т.к. работаю на компе, надеюсь вы все поняли.
9, 10, 11, 12, 13
Объяснение: