Задача нахождения произвольного угла в трапеции требует достаточного количества дополнительных данных. Рассмотрим пример, в котором известны два угла при основании трапеции. Пусть известны углы ∠BAD и ∠CDA, найдем углы ∠ABC и ∠BCD. Трапеция обладает таким свойством, что сумма углов при каждой боковой стороне равна 180°. Тогда ∠ABC = 180°-∠BAD, а ∠BCD = 180°-∠CDA.2В другой задаче может быть указано равенство сторон трапеции и какие-нибудь дополнительные углы. Например, как на рисунке, может быть известно, что стороны AB, BC и CD равны, а диагональ составляет с нижним основанием угол ∠CAD = α.Рассмотрим треугольник ABC, он равнобедренный, так как AB = BC. Тогда ∠BAC = ∠BCA. Обозначим его x для краткости, а ∠ABC - y. Сумма углов любого треугольника равна 180°, из этого следует, что 2x + y = 180°, тогда y = 180° - 2x. В то же время из свойств трапеции: y + x + α = 180° и следовательно 180° - 2x + x + α = 180°. Таким образом, x = α. Мы нашли два угла трапеции: ∠BAC = 2x = 2α и ∠ABC = y = 180° - 2α.Так как AB = CD по условию, то трапеция равнобокая или равнобедренная. Значит, диагонали равны и равны углы при основаниях. Таким образом, ∠CDA = 2α, а ∠BCD = 180° - 2α.
Так как сумма углов любого треугольника равна 180 градусов, то внешний угол будет равен 236°-180°=56°. Это так. Значит ВНУТРЕННИЙ угол треугольника, смежный с внешним, будет равен 180°-56°=124°. Это ТУПОЙ угол, и значит это угол при ВЕРШИНЕ равнобедренного треугольника. Тогда углы при основании равны (180°-124°):2=28°. ответ: углы треугольника равны 124°,28° и 28°.
Или так: Данный нам внешний угол - смежный с тупым внутренним(124°), то есть с углом при вершине, противоположной основанию. Внешний угол равен сумме двух внутренних, не смежных с ним (равные углы при основании). Значит углы при основании равны 56°:2=28°.