Все грани прямоугольного параллелепипеда - прямоугольники.
Двугранный угол DABD₁ - это угол между плоскостями DAB и ABD₁.
АВ - ребро двугранного угла.
DA⊥AB как стороны квадрата,
DA - проекция наклонной D₁A на плоскость DAB, значит
D₁A⊥АВ по теореме о трех перпендикулярах.
DA⊥AB и D₁A⊥АВ,, значит ∠D₁AD - линейный угол двугранного угла D₁ABD.
ΔADC: ∠ADC = 90°, по теореме Пифагора
AD = √(AC² - CD²) = √(100 - 36) = √64 = 8 дм
ΔD₁AD: ∠D₁DA = 90°, DD₁ = AA₁ = 8√3 дм, AD = 8 дм,
tg∠D₁AD = D₁D / AD = 8√3 / 8 = √3
∠D₁AD = 60°
Решение и подробное объяснение:
1) Стороны AB и AC правильного треугольника ABC лежат в двух перпендикулярных плоскостях. Найти площадь треугольника ABC, если точки B и C удалены от прямой пересечений плоскостей на 3√2
Формула площади правильного треугольника
S=(а²√3):4
Рассмотрим рис.№1
Расстояние от В и С до прямой пересечений плоскостей - это проекции сторон АВ и АС на эту прямую.
Сторону треугольника найдем из равнобедренного прямоугольного треугольника ВОС
Пусть АВ=ВС=АС=а
а²=(ВО²+ОС²)=(3√2)²+(3√2)²=36
а=6
S=(а²√3):4=36√3):4=9√3
------------
2) Концы отрезка AB лежат в двух перпендикулярных плоскостях и удалены от прямой их пересечения на 6 и 7. Найти длину отрезка AB, если расстояние между основаниями перпендикуляров, проведенных из точек A и B к прямой пересечения, равны 6.
Рассмотрим рисунок №2.
АМ = расстояние от А до прямой пересечения плоскостей.
ВН - расстояние от В до прямой пересечения плоскостей.
Угол АНВ - прямой по теореме о трех перпендикулярах:
Если прямая (ВН), проведенная на плоскости через основание наклонной(АН), перпендикулярна её проекции (МН), то она перпендикулярна и наклонной.
В треугольнике АМВ отрезок АМ, лежащий в плоскости α, перпендикулярен линии пересечения плоскостей α и β, потому перпендикулярен ВМ, лежащему в плоскости β
ВН перпендикулярна НМ по условию ( расстояние от В до линии пересечения).
Найдем из треугольника ВМН сторону ВМ по тепореме Пифагора:
ВМ²=МН²+ВН²=72
Из треугольника АВМ найдем наклонную АВ:
АВ²=АМ²+ВМ²=49+72=121
АВ=√121=11
----------------
Можно АВ найти из треугольника АНВ:
АН=√(МН²+АМ²)=√(36+49)=√85
АВ=√(85+36)=√121=11