1) отрезки, на которые биссектриса делит боковую сторону, равны 8*x и a*x, где а - неизвестное основание, x тоже неизвестен. Зато известно вот что: a/2 = 8/(8*x); a/2 = 1/x; 8*x + a*x = 8; 1/x = 1 + a/8; Отсюда a/2 = 1 + a/8; a = 8/3; высота h треугольника находится так h^2 = 8^2 - (a/2)^2; h = (4/3)*√35; Площадь S = (1/2)*(8/3)*(4/3)*√35 = (16/9)*√35; 2) В равнобедренной трапеции проекция диагонали на большее основание равна средней линии (а второй отрезок, на который высота из вершины меньшего основания делит большее, то есть - проекция боковой стороны на основание - равен полуразности оснований, докажите самостоятельно, это элементарно). Поэтому высота, средняя линяя и диагональ образуют прямоугольный треугольник, произведение катетов которого рано 48, а сумма квадратов равна 10^2; m^2 + h^2 = 10^2; m*h = 48; Отсюда (m + h)^2 = 196; (m - h)^2 = 4; Если m > h, то m + h = 14; m - h = 2; h = 6; m = 8; Если m > h, то m + h = 14; h - m = 2; h = 8; m = 6; то есть - два решения h = 6 или 8; ответ можно было бы увидеть сразу, поскольку "египетский" треугольник 6,8,10 удовлетворяет условию.
<ВАР=30⁰, <APB = 60⁰ в треугольнике АВР. Смежный угол <APC=120⁰
Треугольник АРС - равнобедренный (АР=РС по доказанному), РО - высота, медиана, биссектриса, т.е. <АРО=<СРО=60⁰, <РАО=30⁰ (сумма углов треугольника равна 180⁰)
<ВАД=90⁰, <ВАР=30⁰, <РАС=30⁰ <ОАТ=90-(30+30)=30⁰, значит <РАТ=60⁹
Получили, треугольник АРТ - равносторонний, т.к. <P=<A=<t=60⁰
Значит, РТ=АР=АТ=8см, Р(АРСТ)=8*4=32(см)
ответ:32см