Ну вроде как площадь находится формулами S = 4пR квадрат
R для каждого шара свой это 12 и 18, П - это постоянная 3,14
Можно сначала найти площадь каждого шара 4 * 3,14 * 12 в квадрате + 4*3,14*144= 1808,64
Второй шар по той же формуле ответ будет 4069,44
Потом они должны сложится чтобы получилась 1 общая площадь
Объём находится по формуле v= 4\3 (дробь четыре третьих) * П* R в кубе
получаем 4\3 * П * 12 в кубе = 4\3 * П * 1728 = 4\3 * П * 1728 = 2304 * П = 7238,23
Потом то же решение только вместо 12 ставим 18, и складываем
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3 / (2√(5 - 4cos80°))
BB₁ = 3x = 9 / (2√(5 - 4cos80°)) или
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2