Из условия задачи следует, что угол при основании треугольника АВС равен 30 град. Обозначим сторону равнобедренного треугольника через а, основание через b, радиус описанной окружности через R. Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3) Известно, что: R=a^2/sqr(4a^2-b^2) Подставив значение b, получим: R=a Отсюда: АВ=2 см Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда: r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.
Векторы AD и ВС равны, так как равны их модули (противоположные стороны параллелограмма) и они сонаправлены. Тогда мы можем найти модуль вектора АС по теореме косинусов. АС|=√(АВ²+ВС²-2*АВ*ВС*Cos120°). Или |АС|=√(9+25+2*3*5*1/2) (так как угол АВС тупой) =7. Тогда косинус угла ВАС равен из этой же теоремы Cos(<BAC)= (a²+b²-c²)/(2ab) (угол образован сторонами а и b) или Cos(<BAC)=(9+49-25).(2*3*7)=0,786 (примерно). Искомый угол по таблице равен 38,2°.
Или так: введем систему координат с точкой их пересечения в начале вектора А. Тогда имеем точки: А(0;0), В(1,5;3√3/2), С(6,5;3√3/2) Вектор AВ{1,5;3√3/2}, |AB| = 3. Вектор АС{6,5;3√3/2}, |AC|=√(42,25+6,75)= √49=7. Cos(<BAC)= (Xab*Xac+Yab*Yac)/(|AB|*|AC|) или Cos(<BAC)=(9,75+6,75)/(3*7) ≈ 0,786. <BAC ≈ 38,2°
Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3)
Известно, что:
R=a^2/sqr(4a^2-b^2)
Подставив значение b, получим: R=a
Отсюда: АВ=2 см
Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда:
r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.