∠2 и ∠6 являются соответственными углами при пересечении прямых a и b секущей c;
∠2 = ∠6, поэтому a║b.
∠2 = ∠4, как вертикальные углы при a∩c, ∠4 = 63°.
∠4 = ∠8, как соответственные углы при a║b и секущей с, ∠8 = 63°.
∠1 и ∠2 являются смежными углами при a∩c, сумма смежных углов равна 180°;
∠1 = 180°-∠2 = 180°-63° = 117°.
∠1 = ∠3, как вертикальные углы при a∩c, ∠3 = 117°.
∠3 = ∠7, как соответственные углы при a║b и секущей c, ∠7 = 117°.
∠5 = ∠7, как вертикальные углы при b∩c, ∠5 = 117°.
ответ: ∠1 = ∠3 = ∠5 = ∠7 = 117°; ∠4 = ∠8 = 63
Объяснение:
1)Треугольники подобны ⇒ и у другого треугольника стороныотносятся как 3х/4х/5х. Большая сторона - 5х, и она равна 15.
15=5х
х=3
тогда первая сторона 3х=9, вторая 4х=12
Периметр равен:9+12+15=36
ответ:36
2)Больший катет лежит против большего отрезка гипотенузы. По свойству катет в прямоугольном треугольнике есть среднее геометрическое между гипотенузой (16+9=25см) и его проекцией на гипотенузу (16см)
х=√(25*16)=20см
ответ:20см
3)Рисунок внизу.
В ΔABD по теореме косинусов:
cosABC=(AB²+BD²-AD²)/(2AB*BD)=(16+1-12,25)/(2*4*1)=4,75/8
В ΔABC по теореме косинусов:
AC²=AB²+BC²-2*AB*BC*cosABC=16+256-2*4*16*4,75/8=196
AC=14
ответ:14