теорема синусов гласит:
a/sinA=b/sinB=c/sinC=2R, гда а,b,c - длины сторон треугольника, A,B,C - соответственно противолежащие им углы, R - радиус описанной окружности.
6*2=a/(√3/2)
12=2a/√3
2a=12√3
a=6√3
S=√3 / 4 * a^2
S=(√3(6√3)^2)/4=√3*108/4=27√3
ответ: 27√3
а) ∆АВС - рівнобедрений (АВ = ВС).
Нехай зовнішній кут 130° - це кут при вершині.
∟DBC = 130°, тоді ∟DBC = ∟A + ∟C.
∟A + ∟C = 130°. ∟A = ∟C = 130° : 2 = 65° (кути при ocнові).
∟B = 180° - ∟DBC. ∟B = 180° - 130°; ∟B = 50°.
Biдповідь: 65", 65°, 50°.
б) ∆АВС - рівнобедрений (АВ = ВС).
Нехай зовнішній кут 130° - це кут при основі ∟BCD = 130°,
тоді ∟BCD + ∟BCA = 180°.
∟BCA = 180° - 130° = 50°; ∟BCA = ∟BAC = 50°
(кути при ocновi рівнобедреного трикутника).
∟BAC + ∟BCA + ∟B = 180°.
∟B = 180° - (50° + 50°) = 180° - 100° = 80°.
Biдповідь: 50°, 50°, 80°.
ответил 08 Янв, 17 от discere
По теореме синусов сторона треугольника равна 6*√3; а высота равна (3/2)*6 = 9 (в правильном треугольнике центр описанной окружности совпадает с ортоцентром и медианы с высотами, поэтому от центра до вершины как раз 2/3 высоты).
Отсюда площадь 27*√3