Вероятно, в задаче идет речь о построении перпендикуляра к прямой, проходящего через данную точку на прямой, с циркуля и линейки. Дано: прямая а, точка А, принадлежащая прямой. 1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.3) Через точки пересечения этих окружностей (К и Н) проведем прямую b.Прямая b - искомый перпендикуляр к прямой а. Доказательство:А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС.Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а. Подробнее - на -
Расстояние от точки до прямой --это перпендикуляр... от вершин расстояния изображены красным пунктиром))) если построить расстояние от середины отрезка (стороны треугольника), то это получится средняя линия трапеции с основаниями --расстояниями от концов этого отрезка ((я изобразила одно такое расстояние синим пунктиром, второе -- синим сплошным, третье не стала изображать -- мешать будет))) длина синей сплошной = (а+с)/2 получится: (а+b)/2 + (а+с)/2 + (b+с)/2 = а+b+с = 30 Сумма расстояний от середин сторон будет такой же)))
Прямоугольной