Соч по геометрии 9 класс 5) В треугольнике с вершинам в точках М (2;-3) N(-4;6) K(5;-1) определите косинус угла N 6) Дан равносторонний треугольник ABC, периметр которого 18. Найдите (BC - 3BA)2
Первое - оч понятно: средняя линия - полусумма оснований, значит две средние линии равны сумме оснований. то есть нужно 48 (24*2) разбить на части, относящиеся как 2:3. а это 2/5 и 3/5 от нее: 48*2/5 = 96/5 = 19,2 48*3/5 = 144/5 = 28,8
Второе тоже не сложно: Снгова вспоминаем, что средняя линия - это среднее арифметическое, т.е. полусумма оснований. Значит, ее длина (5,6+2,4)/2 = 4м
несложный анализ картинки - трапеция со средней линией и диагональю - дает понимание, что диагональ делит среднюю линию пополам (нужно ли доказывать?) Значит разбивает ее на отрезки по 2 метра
Уравнение окружности в общем виде: ( х - а)^2 + (у - в)^2 = R^2, где (а,в) - координаты центра окружности, R - радиус. Если центр окружности лежит на биссектрисе, значит координаты равны у = х. Пусть у = х = t. Точка (1; 8) принадлежит окружности, значит: (1-t)^2 + (8-t)^2 = 5^2; 1 - 2t + t^2 + 64 - 16t + t^2 = 25; 2t^2 - 18t + 40 = 0; t^2 - 9t + 20 = 0; t = 4 или t = 5, уравнений, удовлетворяющих данному условию два: (х - 5)^2 + (y - 5)^2 = 5^2 или (х -4)^2 + (y - 4)^2 = 5^2
средняя линия - полусумма оснований, значит две средние линии равны сумме оснований.
то есть нужно 48 (24*2) разбить на части, относящиеся как 2:3.
а это 2/5 и 3/5 от нее:
48*2/5 = 96/5 = 19,2
48*3/5 = 144/5 = 28,8
Второе тоже не сложно:
Снгова вспоминаем, что средняя линия - это среднее арифметическое, т.е. полусумма оснований. Значит, ее длина (5,6+2,4)/2 = 4м
несложный анализ картинки - трапеция со средней линией и диагональю - дает понимание, что диагональ делит среднюю линию пополам (нужно ли доказывать?)
Значит разбивает ее на отрезки по 2 метра
Ура!)