Объяснение:
10 см. Либо по самому простому : точка пересечений делит на половину стороны квадрата, либо пойти более длинным путем и решить через прямоугольный треугольник. ABCD - квадрат; a - AD=DC=CB=AB = 20 см; AC=BD - диагональ; О - точка пересечения диагоналей; OG - высота, проведенная в треугольнике AOD. Диагональ квадрата: AC=BD = a√2 = 20√2 (см). BO=OD=AO=OC = 20√2/2 = 10√2 (cм). AG=GD = a/2 = 20/2 = 10 (см). Рассматриваем треугольник DGO. (DO - гипотенуза, DG - 10 см, GO - ?) По т. Пифагора: GO = √DO² - DG² = √(10√2)² - 10² = √100*2 - 100 = √200-100 = √100 = 10 (cм)
В этом треугольнике найдем по Пифагору гипотенузу ВС:
ВС=√[2*(4√2)²]=8 см.
Тогда площадь треугольника АВС по Герону:
S=√[p*(p-a)*(p-b)*(p-c)], где р-полупериметр, a,b,c - стороны треугольника.
В нашем случае р=(5+5+8):2==9 см.
Тогда S=√(9*1*4*4)=12 cм².
Можно и так:
Проведем высоту АК в равнобедренном треугольнике АВС. Она является и медианой.
Значит СК=4 см и по Пифагору АК=√(5²-4²)=3. Тогда Sabc=(1/2)*8*3=12 cм².
ответ: площадь треугольника АВС равна 12 см².