1) если в основании прямоугольник со сторонами а и в, площадь боковой поверхности равна 2(a + b) * c = 2 *10 * 3 = 60 /см²/; площадь полной поверхности = S(бок) + 2S(осн) = 60 + 2 *6 * 4 = 60 + 48 = 108/ см²/
2) Если в основании прямоугольник со сторонами а и с, то площадь боковой пов. равна 2(a + с) * в=2*9*4=72/см²/ ; площадь полной поверхности = S(бок) + 2S(осн) 72+2*6*3=108/см²/,
3) если в основании прямоугольник со сторонами в и с, площадь боковой поверхности равна 2(в + с) * а = 2 * 7 * 6= 84/см²/; площадь полной поверхности = S(бок) + 2S(осн) = 84 + 2 *4 *3 = 84 + 24 = 108/ см²/
Конечно, площадь полной поверхности не менялась оттого, что мы меняли основания.
Боковое ребро образует с плоскостью основания угол 45°, значит высота
пирамиды равна отрезку высоты основания пирамиды, считая от вершины, то есть она равна 2/3 высоты основания. Тогда высота основания равна 4√3*3/2=6√3.
Высота равностороннего треугольника (основания пирамиды) равна
h=(√3/2 )*a, где а - сторона треугольника (основания), отсюда а=6√3*2/√3=12.
ответ: сторона основания пирамиды а=12.