1. Обозначим тот самый острый за х. Тогда сумма остальных равна 8х. Значит сумма всех четырех равна х+8х=9х=360. Отсюда х=40. Смежный с ним будет 180-40=140. И два оставшиеся - вертикальные. ответ: 40, 140, 40, 140.
2. Если сумма углов первой пары составляет 2/3 суммы другой пары, то соответственно, сумма второй пары составляет 3/2 суммы первой. За х обозначим сумму первой пары. Тогда 3х/2 - сумма второй пары. Опять-таки сумма всех 4 углов равна х+3х/2=5х/2=360. Отсюда 5х=720, значит х=144. Значит один из этих вертикальных равен 72. Ему смежный 108. ответ: 72, 108, 72, 108.
Пусть E - точка пересечения прямых BC и AD. Если Е не совпадает с D (на чертеже изображен как раз один из таких случаев), то прямоугольные треугольники BED и CED равны по гипотенузе и катету: BD=CD по условию, а ED - общий катет. Отсюда ∠BDE=∠CDE, а т.к. точки A,D,E лежат на одной прямой, то и ∠BDA=∠CDA. (Заметим, что если Е совпала с D, то равенство углов ∠BDA и ∠CDA следует сразу из условия, т.к. BC⊥AD). Далее, треугольники BDA и CDA равны по сторонам и углу между ними (AD - общая, BD=CD по условию, ∠BDA=∠CDA доказали выше), а значит, AB=AC, что и требовалось.
Смежный с ним будет 180-40=140. И два оставшиеся - вертикальные.
ответ: 40, 140, 40, 140.
2. Если сумма углов первой пары составляет 2/3 суммы другой пары, то соответственно, сумма второй пары составляет 3/2 суммы первой.
За х обозначим сумму первой пары. Тогда 3х/2 - сумма второй пары.
Опять-таки сумма всех 4 углов равна х+3х/2=5х/2=360. Отсюда 5х=720, значит х=144. Значит один из этих вертикальных равен 72.
Ему смежный 108.
ответ: 72, 108, 72, 108.