Треугольники АЕД и ВЕС - подобные (уг.ВЕС = уг.АЕД как вертикальные; уг.СВЕ = уг.АДЕ как внутренние накрест лежащие при параллельных прямых АД и ВС и секущей ВД).
Площадь тр-ка ВЕС равна S1 = 0,5ВС·Н1
Площадь тр-ка АЕД равна S2 = 0,5АД·Н2
При этом Н1:Н2 = к -коэфиициент подобия, а S1 : S2 = к²
S1 : S2 = 0,5ВС·Н1 : 0,5АД·Н2
к² = к· ВС: АД
к = 6/14
к = 3/7
Итек, нашли коэффициент подобия.
Из подобия тех же тр-ков следует, что СЕ:АЕ = 3/7, но АЕ = АС - СЕ и
Определение: Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой. Линейный угол двугранного угла - это угол, образованный двумя лучами, которые имеют общее начало, лежащее на ребре двугранного угла, и проведенными в обеих гранях перпендикулярно этому ребру. Обе плоскости сечения содержат в себе диагональ куба А1С, которая является линией их пересечения. Соотношение линейных величин у кубов одинаковы. Пусть данный куб единичный, где его ребро равно 1. Тогда его диагональ А1С по формуле диагонали куба равна √3, а диагональ его грани равна √2. А1С=√3 А1В=√2 Искомый угол ∠В1КН, где В1К - высота треугольник аА1В1С. В1Н - перпендикуляр из В1 на плоскость А1СВ, в частности, В1Н перпендикулярен А1В. Из треугольник аА1В1С найдем В1К. Треугольники А1В1С и КВ1С подобны. А1В1:В1К=А1С:В1С 1/В1К=√3/√2 Грани куба - равные квадраты. Диагонали квадрата перпендикулярны и точкой пересечения делятся пополам. В1Н ⊥ А1В, ⇒ является половиной диагонали грани куба и равна ( √2):2 В1К ⊥ А1С, НК ⊥ А1С. Треугольник В1НК - прямоугольный. cos ∠ НВ1К=В1Н:В1К cos ∠НВ1К=(√2/2):√2/√3=√3/2, и это косинус угла 30º. Значит, угол В1КН, как второй острый угол прямоугольного треугольника, равен 90º-30º=60º
Треугольники АЕД и ВЕС - подобные (уг.ВЕС = уг.АЕД как вертикальные; уг.СВЕ = уг.АДЕ как внутренние накрест лежащие при параллельных прямых АД и ВС и секущей ВД).
Площадь тр-ка ВЕС равна S1 = 0,5ВС·Н1
Площадь тр-ка АЕД равна S2 = 0,5АД·Н2
При этом Н1:Н2 = к -коэфиициент подобия, а S1 : S2 = к²
S1 : S2 = 0,5ВС·Н1 : 0,5АД·Н2
к² = к· ВС: АД
к = 6/14
к = 3/7
Итек, нашли коэффициент подобия.
Из подобия тех же тр-ков следует, что СЕ:АЕ = 3/7, но АЕ = АС - СЕ и
СЕ: (АС - СЕ) = 3/7
7·СЕ = 3·(АС - СЕ)
7·СЕ = 3·АС - 3·СЕ
10·СЕ = 3·АС
СЕ = 3·АС/10 = 3·15:10 = 4,5
ответ: СЕ = 4,5см