обозначим А - (см) - катет 1, против известного угла Б - (см) - катет 2, соприкасается с известным углом С - (см) - гипотенуза
1) Определить значение тангенса угла ТАН (известный угол)
2) Определить длину неизвестного катета через тангенс ТАН (известный угол) = А / Б - если известен катет (А) лежащий против известного угла, то находишь катет Б Б = А / ТАН (известный угол) - если известен прилежащий катет (Б) к известному углу, то находишь катет А А = Б * ТАН (известный угол)
3) Определить по теореме Пифагора длину гипотенузы (С) - С^2 = А^2 + Б^2, откуда С = корень квадратный из ( А^2 + Б^2)
4) Определить ПЕРИМЕТР = А+Б+С (см)
5) Определить ПЛОЩАДЬ треугольника равную половине произведения его катетов. т. е. S = ( 1/2 х А х Б ) (кв. см)
Решение: основания трапеции не могут быть одинаковой длины, следовательно даны длины меньшего основания и боковых сторон: АВ = ВС = СЕ = 6 см, значит трапеция равнобокая, ∠ВСЕ = ∠АВС = 120°
Опустим высоты ВМ и СК. Высоты трапеции перпендикулярны основаниям ⇒ ВСКМ - прямоугольник, отсюда: МК = ВС = 6 см
Рассмотрим треугольники АВМ и ЕСК: ∠АВМ = ∠ЕСК = 120 - 90 = 30° В прямоугольном треугольнике, катет, лежащий против угла 30° равен половине гипотенузы, отсюда: АМ = АВ/2 = 6/2 = 3 см КЕ = СЕ/2 = 6/2 = 3 см
АЕ = АМ + МК + КЕ = 3 + 6 + 3 = 12 см
Средняя линия трапеции равна полусумме оснований, отсюда: РО = (ВС + АЕ)/2 = (6 + 12)/2 = 9 см
в)тупий
Объяснение:
Тому,що розгорнутий кут має 180°
180°-80°=100°