Объяснение:
3. 1) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания,
значит ∠ ОКМ=90°-7°=83° .
2) ∆ ОКМ- равнобедренный (ОК=КМ=r) , значит ∠ОКМ=∠ОМK=83°.
4. 1) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания,
значит ∠ ОКМ=90°-84°=6°
2) ∆ ОКМ- равнобедренный (ОК=КМ=r) , значит ∠ОКМ=∠ОМK=6°.
5. ∠ ABC =90°(вписанный), т.к ∪ АС=180° (опирается на диаметр АС). Тогда ∠С=180°-90°-75°=25°
6. 1) ∪ AN=73°·2=146° (стягивает вписанный ∠ NBA). Тогда
∪ NB =∪ AB-∪AN=180°-146°=34°.
2) ∠NMB=34°/2=17° (вписанный не центральный угол)
7. 1) ∆ АОВ- равнобедренный(АО=ОВ=r), значит ∠ОАВ=∠АВО=15°. Тогда ∠ОВС =56°-15°=41°.
2) ∆ ВОС- равнобедренный(ВО=ОС=r), значит ∠ОВС=∠ВСО=41°.
8. ∆ АОВ =∆ СОD (AO=OD=r, CO=OB=r, ∠AОВ =∠CОD-вертикальные ), значит ∠ОАВ =∠ОСD=25°
...
Сделаем рисунок и обозначим вершины трапеции АВСD.
Пусть основаниями будут ВС и АD.
По условию задачи ∠А+∠С=90º
Т.к. в треугольнике АВD ∠АВD+∠ВАD=90º, то ∠АВD= ∠ВСD
Если в прямоугольных треугольниках равны один из острых углов, то такие треугольники подобны.
Меньшая диагональ ВD является высотой трапеции - она перпендикулярна основаниям по условию.
Из подобия ᐃ АВD и ᐃ ВСD
АD:ВD=ВD:ВС
18:ВD=ВD:2
ВD²=36
ВD=6
Площадь трапеции равна половине произведения её высоты на сумму оснований.
S=6(2+18):2=60 ( квадратных единиц измерения)
1)
Так как треугольник равнобедренный, биссектриса в нем "3 в одном флаконе": биссектриса, высота и медиана. Медиана делит сторону, к которой проведена, на две равные части.
Следовательно, АD=DC.
2)
Пусть это трапеция АВСD. Нужно найти ВО:ОD
Так как АВ=СD, то
∠ АВD=∠ АСD
Сравним треугольник АВD и АВО
В них, как в любом треугольнике, сумма углов 180º.
В треугольнике АВD
сумма углов равна
180º=90º + ∠А+∠А:2 ( так как ∠А=∠D)
В треугольнике АВО
180º=90º+∠А:2+ ∠АОВ
Следовательно, ∠АОВ = ∠А
∠А+∠А:2=180º-90º=90º
1,5 ∠А=90º
0,5∠А=30º
∠ВАО=30º По свойству катета, противолежащего углу 30º
ВО=АО:2
АО=ОD
ВО:ОD=1:2