М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ViktoriaUiliams
ViktoriaUiliams
31.07.2020 10:37 •  Геометрия

Задание к чертежам: найти пары равных тре- угольников и доказать их равенство.
Теория к заданиям:
D
2
І признак: если два угла одного
треугольника соответственно раины
двум углам другого, то такие тре-
угольники подобны (рис. 42).
2A - Ay 2В - В.
ДА
BA,
B:
M
Конец документа
R
Р
Х
N N
аны 1-2 из 2​


Задание к чертежам: найти пары равных тре- угольников и доказать их равенство.Теория к заданиям:D2І

👇
Открыть все ответы
Ответ:
kenzhegali1
kenzhegali1
31.07.2020

через 2 прямые МР и НО модно провести плоскость, препендикулярную заданной. В этой плоскости МНРО - трапеция, с основаниями НО = 12, МР = 24, и боковой стороной, перпендикулярной основаниям (это в условии задано, что МР и НО препендикулярны плоскости, а РО как раз лежит в этой плоскости, потому что точки Р и О лежат в ней :. Эта боковая сторона РО = 5. Надо найти вторую, так сказать, наклонную боковую сторону трапеции. Как это делается, ясно из следующего соотношения

МН^2 = (МР - НО)^2 + РО^2; 

МН^2 = (24 - 12)^2 + 5^2;

МН =13

4,4(39 оценок)
Ответ:
dashaloh000
dashaloh000
31.07.2020
Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру.
Следовательно, двугранный угол при основании пирамиды равен линейному углу между высотой грани и ее проекцией на основание. Эта проекция - отрезок, соединяющий точку О, в которую проецируется высота пирамиды на основание пирамиды. Раз все двугранные углы равны, значит равны и эти отрезки и мы доказали пункт б).
Равенство этих проекций доказывает, что  точка О равноудалена от сторон треугольника. Это значит, что точка О - центр вписанной окружности в основание треугольника, то есть доказан пункт а).
Найдем длину проекции на плоскость основания высот боковых граней, проведенных из вершины пирамиды, или, как мы доказали, радиус вписанной в основание пирамиды окружности.
В равнобедренном треугольнике АВС BН - его высота, АН=НС=а/2.
Тогда АВ=АН/Cosα или AB=a/(2Cosα). BH=AB*Sinα или BH=a*Sinα/(2Cosα)=(а/2)*tgα.
Sabc=(1/2)*AC*BH или Sabc=(а/2)*(а/2)*tgα=(а²/4)*tgα.
Есть формула площади треугольника: S=p*r, где р - полупериметр,
r - радиус вписанной окружности. Тогда r=S/p или r=[(а²/4)*tgα]/p. p=2*AB+AC. Или
р=2*a/(2Cosα)+а=a/Cosα+а=а((1/Cosα)+1)=(а*(1+Cosα))/Cosα.
r=[(а²/4)*tgα]/[(а*(1+Cosα))/Cosα] или r=a*Sinα/[4(1+Cosα)].
ответ: r=a*Sinα/[4(1+Cosα)].

Основание пирамиды - равнобедренный треугольник с основанием а и углом при основании а. все двугранн
4,6(75 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ