Из каждой вершины пятиугольника выходит две диагонали (сама с собой и соседними вершинами диагональ не образует), поэтому
5·2 = 10 - число отрезков, проведённых от всех вершин к противоположным.
При таком подсчёта каждая диагональ посчитана дважды (действительно, отрезки АС и СА - одна и та же диагональ), поэтому, чтобы найти число диагоналей выпуклого пятиугольника мы найденное количество отрезков разделим пополам:
Проведем диагонали АС и ВD.Точку пересечения обозначим Е. В треугольниках АВЕ и СDЕ имеется по два равных угла: один - по условию, второй - вертикальный. Первый признак подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.⇒ ∆ АВЕ ≈ ∆ СDЕ, ⇒ АЕ пропорциональна DE, ВЕ пропорциональна ЕС. В треугольниках ADE и ВСЕ: АЕ пропорциональна DЕ, ВЕ- пропорциональна СЕ, углы АЕD и BEC равны, как вертикальные. Второй признак подобия треугольников Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Треугольники ADE и ВСЕ подобны и углы, противолежащие пропорциональным сторонам, равны. ⇒∠ВDA=∠BCA
б) 5.
Объяснение:
Из каждой вершины пятиугольника выходит две диагонали (сама с собой и соседними вершинами диагональ не образует), поэтому
5·2 = 10 - число отрезков, проведённых от всех вершин к противоположным.
При таком подсчёта каждая диагональ посчитана дважды (действительно, отрезки АС и СА - одна и та же диагональ), поэтому, чтобы найти число диагоналей выпуклого пятиугольника мы найденное количество отрезков разделим пополам:
10 : 2 = 5.
ответ: 5 диагоналей.
Заметим, что иногда пользуются готовой формулой:
в выпуклом n-угольнике n(n-3) / 2 диагонали.