Обозначим начало наклонной А, конец наклонной В ( точка пересечения с плоскостью α).
Опустим из А перпендикуляр на плоскость α.
ВС- проекция наклонной а.
АС⊥ВС.
Угол АВС=45°
Прямую b обозначим ВК; угол АВК=60°
Рассмотрим треугольник АВС.
Так как угол АВС=45°, то угол ВАС=45°,
треугольник АВС прямоугольный равнобедренный.
АС=ВС=а*sin(45°)=(a√2):2.
Треугольник АВК прямоугольный.
ВК=а*cos(60°)=а:2
Треугольник ВКС - прямоугольный с гипотенузой ВС
cos ∠ KBC=BК:ВС=(а:2):(a√2):2=1:√2. Умножив числитель и знаменатель на √2, получим
cos ∠ KBC=√2):2. Это косинус 45°
АН⊥ВС.
СС₁⊥(АВС), значит АН⊥СС₁.
АН перпендикулярен двум пересекающимся прямым плоскости (ВСС₁), значит АН⊥(ВСС₁).
Проведем КТ║АН.
Тогда КТ⊥(ВСС₁).
Плоскость (С₁КТ) проходит через прямую КТ, перпендикулярную (ВСС₁), значит (С₁КТ)⊥(ВСС₁).
С₁КТ - искомое сечение.
С₁Т - проекция С₁К на плоскость (ВСС₁), значит ∠КС₁Т - угол между прямой С₁К и плоскостью (ВСС₁).
∠КС₁Т - искомый. Обозначим его α.
ΔАВС: АН = АВ√3/2 = 4√3/2 = 2√3 как высота равностороннего треугольника.
КТ = АН/2 = √3 как средняя линия ΔАСН.
ΔСС₁К: по теореме Пифагора
С₁К = √(СС₁² + КС²) = √(6 + 4) = √10
ΔС₁КТ: КТ - перпендикуляр к плоскости (ВСС₁), прямая С₁Т лежит в этой плоскости, значит КТ⊥С₁Т. Треугольник прямоугольный.
sinα = KT/C₁K = √3/√10
cosα = √(1 - sin²α) = √(1 - 3/10) = √(7/10) = √70/10