Висота буде 20 см
Объяснение:
Позначимо точки дотику на стороні ВС через Р , на стороні СД через К Сторона ВС складається з відрізківСК=4 см та КС =25 см , з точки С відходять дві дотичні прямі :СР та СК вони рівні і дорівнюють по 4 см.А з точки Д проходять дві дотичні прямі ДК та ДМ які теж однакові і дорівнюють по 25 см. З точки С проведемо висоту до основи АД і позначимо точку перетину через Ф .Якщо ДМ=25 см МФ=4 см , то ФД= 25-4=21 см. Трикутник СФД прямокутній , то можемо знайти висоту СФ
СФ²=СД²-ФД²=29²-21²=841-441=400√400=20 Висота СФ=20см
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.