Пусть d, e и f - точки касания вписанной окружности со сторонами треугольника авс: ас, ав и вс соответственно.нам дано: ав=30см, вf=14см, fc=12см.заметим, что ве=вf=14см, dc=fc=12см, а ае=аd как касательные, проведенные из одной точки к окружности.тогда ае=ав-ве=30-14=16см, значит аd=16см. dc=fc=12см. значит ас=ad+dc=16+12=28см. полупериметр треугольника равен: р=(30+26+28): 2=42см.есть формула для вписанной в треугольник окружности: r=√[(p-a)(p-b)(p-c)/р], где р - полупериметр, а, b, c - стороны треугольника. в нашем случае: r=√(12*16*14/42)=√64=8см.ответ: r=8см.
можно рассмотреть ΔАВD --- часть 4-угольника)))
он состоит из двух треугольников, с общей высотой)))
значит площади S(АВО) : S(ADO) = BO:DO = 3:5 ---относятся как основания)))
S(ABO) = (3/5)*S(ADO)
аналогично: 9*S(ABO) = 4*S(CBO)
S(CBO) = (9/4)*S(ABO) = (27/20)*S(ADO)
точно так же: 5*S(CBO) = 3*S(CDO)
S(CDO) = (5/3)*S(CBO) = (9/4)*S(ADO)
S(ABCD) = S(ADO) + S(ABO) + S(BCO) + S(CDO) =
= S(ADO)*(1 + (3/5) + (27/20) + (9/4)) =
= (104/20)*S(ADO) = (26/5)*S(ADO)
S(ADO) = (5/26)*S(ABCD) = 5*52/26 = 5*2 = 10