М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
oleygoroz44xd
oleygoroz44xd
25.06.2022 16:59 •  Геометрия

В прямоугольнике одна сторона равна 12дм, периметр равен 56дм. Найдите площадь прямоугольника Самост бестрее

👇
Открыть все ответы
Ответ:
uliatuchakrom9
uliatuchakrom9
25.06.2022

1)Периметр ромба равен 4*сторона 

сторона=  52\4=13 см 
Площадь ромба равна произведению квадрата стороны на синус угла между сторонами 
отсюда синус угла =площадь робма разделить на квадрат стороны 
sin A=120\(13^2)=120\169 
Так как угол А -острый,то cos A=корень(1-sin^2 A)=корень(1-(120\169)^2)= 
=119\169 
По одной из основных формул тригонометрии 
tg A=sin A\cos A=120\169\(119\169)=120\119 
ответ:120\169,119\169,120\119.

2)

Катеты треугольника относятся друг к другу как 9 к 40.

Пусть длина одного катета 9х, тогда второго 40х.

По теореме пифагора квадрат катетов  равен квадрату гипотенузы

(9х) в квадрате + (40х) в квадрате = 82 в квадрате

81 х^2 + 1600 х^2 = 6724. Отсюда х^2 = 4.

х=2.

один катет 9х=18 см

второй катет 40х=80 см
3)

 Боковые стороны: (36-10)/2=13
Высота h=корень(169-25)=12
tga=5/12 sina=5/13  cosa=12/13.
4) cos - отношение прилежащего( в данном случае неизвестного) катета к гипотенузе, пусть гипотенуза - х, тогда катет 24х / 25. по теореме пифагора квадрат гипотенузы равен сумме квадратов катетов x^2=14^2+(24x / 25)^2, отсюда х=50, а второй катет равен 48

4,8(36 оценок)
Ответ:
karine228
karine228
25.06.2022

32 cм²

Объяснение:

Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему:

Sбок= 1/2*(Р1+Р2)*L,

где Р1 и Р2 - периметры оснований пирамиды, L - апофема (высота боковой грани правильной усеченной пирамиды)

Найдём сто­роны оснований правильной четырехугольной усеченной пирамиды.

Диагональ квадрата: d = a√2, где а  - сторона квадрата.

⇒ а = d/√2

АД = 6/√2 = 3√2, А1Д1= 2/√2 = √2.

Р1=4*АД= 4 * 3√2 = 12√2 см - периметр верхнего основания.

Р2=4*А1Д1=4√2 см - периметр нижнего основания пирамиды.

Найдем апофему L

Основания усеченной пирамиды - квадраты. Проведем из центров оснований перпендикуляры ОМ⊥ДС и О1М1⊥Д1С1. ОМ и О1М1 - радиусы вписанных окружностей в основания.

Т.к. r=a /2 (половина стороны основания), то  

О1М1= А1Д1/2 =  \frac{\sqrt{2} }{2}

ОМ = АД/2 =   \frac{3\sqrt{2} }{2}

Опустим перпендикуляр М1К из точки М1 верхнего основания  на нижнее основание. Получим прямоугольный ΔМ1КМ.

Т.к. М1К⊥КМ, КМ⊥ДС,  то М1М⊥ДС ( по теореме о трёх перпендикулярах) ⇒∠М1МК = 60° (это данный нам линейный угол двугранного угла при ребре большего основания).

КМ = разнице расстояний от центров оснований до боковых сторон, то есть КМ = ОМ-О1М1=   \frac{3\sqrt{2} }{2} - \frac{\sqrt{2} }{2} = \sqrt{2} см.

Тогда гипотенуза (апофема) L = ММ1 = КМ / cos 60° = \sqrt{2} : \frac{1}{2} = 2\sqrt{2}

Sбок = \frac{1}{2} * ( 12\sqrt{2} + 4\sqrt{2} ) * 2\sqrt{2} = \sqrt{2} (12+4) \sqrt{2} = 2*16=32 cм²


диагонали основ правильной четырехугольной усеченной пирамиды равны 6 и 2 см, а двугранный угол при
4,6(84 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ