Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
ОА-ОВ=ВА.
По правилу нахождения суммы векторов, начало второго вектора совмещается с концом первого, сумма векторов есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго.ВА+АС=ВС.
ответ:(OA-OB) +AC = ВС.
2) АВ-АО=ОВ (по правилу). ОВ-OD = DB (по правилу от конца вычитаемого к концу уменьшаемого).
Или так: в параллелограмме точка пересечения диагоналей делит их пополам. Векторы ОВ и OD равны, но направлены в противоположные стороны, значит ОD = -OB и ОВ-OD = OB-(-ОВ) = 2ОВ =DB.
ответ: (AB-AO)-OD = DB.